Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvds2lem Unicode version

Theorem dvds2lem 13996
 Description: A lemma to assist theorems of with two antecedents. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvds2lem.1
dvds2lem.2
dvds2lem.3
dvds2lem.4
dvds2lem.5
Assertion
Ref Expression
dvds2lem
Distinct variable groups:   ,I,   ,J,   ,,   ,,   ,M,   ,N,   ,,

Proof of Theorem dvds2lem
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dvds2lem.1 . . . . . 6
2 dvds2lem.2 . . . . . 6
3 divides 13988 . . . . . . 7
4 divides 13988 . . . . . . 7
53, 4bi2anan9 873 . . . . . 6
61, 2, 5syl2anc 661 . . . . 5
76biimpd 207 . . . 4
8 reeanv 3025 . . . 4
97, 8syl6ibr 227 . . 3
10 dvds2lem.4 . . . . 5
11 dvds2lem.5 . . . . 5
12 oveq1 6303 . . . . . . 7
1312eqeq1d 2459 . . . . . 6
1413rspcev 3210 . . . . 5
1510, 11, 14syl6an 545 . . . 4
1615rexlimdvva 2956 . . 3
179, 16syld 44 . 2
18 dvds2lem.3 . . 3
19 divides 13988 . . 3
2018, 19syl 16 . 2
2117, 20sylibrd 234 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  e.wcel 1818  E.wrex 2808   class class class wbr 4452  (class class class)co 6296   cmul 9518   cz 10889   cdvds 13986 This theorem is referenced by:  dvds2ln  14014  dvds2add  14015  dvds2sub  14016  dvdstr  14018 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-iota 5556  df-fv 5601  df-ov 6299  df-dvds 13987
 Copyright terms: Public domain W3C validator