![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dvds2ln | Unicode version |
Description: If an integer divides each of two other integers, it divides any linear combination of them. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvds2ln |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 1002 | . . 3 | |
2 | simpr2 1003 | . . 3 | |
3 | 1, 2 | jca 532 | . 2 |
4 | simpr3 1004 | . . 3 | |
5 | 1, 4 | jca 532 | . 2 |
6 | simpll 753 | . . . . 5 | |
7 | 6, 2 | zmulcld 11000 | . . . 4 |
8 | simplr 755 | . . . . 5 | |
9 | 8, 4 | zmulcld 11000 | . . . 4 |
10 | 7, 9 | zaddcld 10998 | . . 3 |
11 | 1, 10 | jca 532 | . 2 |
12 | zmulcl 10937 | . . . . . . . 8 | |
13 | zmulcl 10937 | . . . . . . . 8 | |
14 | 12, 13 | anim12i 566 | . . . . . . 7 |
15 | 14 | an4s 826 | . . . . . 6 |
16 | 15 | expcom 435 | . . . . 5 |
17 | 16 | adantr 465 | . . . 4 |
18 | 17 | imp 429 | . . 3 |
19 | zaddcl 10929 | . . 3 | |
20 | 18, 19 | syl 16 | . 2 |
21 | zcn 10894 | . . . . . . . 8 | |
22 | zcn 10894 | . . . . . . . 8 | |
23 | 21, 22 | anim12i 566 | . . . . . . 7 |
24 | 18, 23 | syl 16 | . . . . . 6 |
25 | 1 | zcnd 10995 | . . . . . . 7 |
26 | 25 | adantr 465 | . . . . . 6 |
27 | adddir 9608 | . . . . . . 7 | |
28 | 27 | 3expa 1196 | . . . . . 6 |
29 | 24, 26, 28 | syl2anc 661 | . . . . 5 |
30 | zcn 10894 | . . . . . . . . 9 | |
31 | 30 | adantr 465 | . . . . . . . 8 |
32 | 31 | adantl 466 | . . . . . . 7 |
33 | zcn 10894 | . . . . . . . 8 | |
34 | 33 | ad3antrrr 729 | . . . . . . 7 |
35 | 32, 34, 26 | mul32d 9811 | . . . . . 6 |
36 | zcn 10894 | . . . . . . . . 9 | |
37 | 36 | adantl 466 | . . . . . . . 8 |
38 | 37 | adantl 466 | . . . . . . 7 |
39 | 8 | zcnd 10995 | . . . . . . . 8 |
40 | 39 | adantr 465 | . . . . . . 7 |
41 | 38, 40, 26 | mul32d 9811 | . . . . . 6 |
42 | 35, 41 | oveq12d 6314 | . . . . 5 |
43 | 32, 26 | mulcld 9637 | . . . . . . 7 |
44 | 43, 34 | mulcomd 9638 | . . . . . 6 |
45 | 38, 26 | mulcld 9637 | . . . . . . 7 |
46 | 45, 40 | mulcomd 9638 | . . . . . 6 |
47 | 44, 46 | oveq12d 6314 | . . . . 5 |
48 | 29, 42, 47 | 3eqtrd 2502 | . . . 4 |
49 | oveq2 6304 | . . . . 5 | |
50 | oveq2 6304 | . . . . 5 | |
51 | 49, 50 | oveqan12d 6315 | . . . 4 |
52 | 48, 51 | sylan9eq 2518 | . . 3 |
53 | 52 | ex 434 | . 2 |
54 | 3, 5, 11, 20, 53 | dvds2lem 13996 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 = wceq 1395 e. wcel 1818
class class class wbr 4452 (class class class)co 6296
cc 9511 caddc 9516 cmul 9518 cz 10889 cdvds 13986 |
This theorem is referenced by: gcdaddmlem 14166 dvdsgcd 14181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-dvds 13987 |
Copyright terms: Public domain | W3C validator |