![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dvdscmulr | Unicode version |
Description: Cancellation law for the divides relation. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvdscmulr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zmulcl 10937 | . . . . . . 7 | |
2 | 1 | 3adant3 1016 | . . . . . 6 |
3 | zmulcl 10937 | . . . . . . 7 | |
4 | 3 | 3adant2 1015 | . . . . . 6 |
5 | 2, 4 | jca 532 | . . . . 5 |
6 | 5 | 3coml 1203 | . . . 4 |
7 | 6 | 3adant3r 1225 | . . 3 |
8 | 3simpa 993 | . . 3 | |
9 | simpr 461 | . . 3 | |
10 | zcn 10894 | . . . . . . . . . . . 12 | |
11 | zcn 10894 | . . . . . . . . . . . 12 | |
12 | 10, 11 | anim12i 566 | . . . . . . . . . . 11 |
13 | zcn 10894 | . . . . . . . . . . 11 | |
14 | zcn 10894 | . . . . . . . . . . . 12 | |
15 | 14 | anim1i 568 | . . . . . . . . . . 11 |
16 | mul12 9767 | . . . . . . . . . . . . . . . . 17 | |
17 | 16 | 3adant1r 1221 | . . . . . . . . . . . . . . . 16 |
18 | 17 | 3expb 1197 | . . . . . . . . . . . . . . 15 |
19 | 18 | ancoms 453 | . . . . . . . . . . . . . 14 |
20 | 19 | 3adant2 1015 | . . . . . . . . . . . . 13 |
21 | 20 | eqeq1d 2459 | . . . . . . . . . . . 12 |
22 | mulcl 9597 | . . . . . . . . . . . . 13 | |
23 | mulcan 10211 | . . . . . . . . . . . . 13 | |
24 | 22, 23 | syl3an1 1261 | . . . . . . . . . . . 12 |
25 | 21, 24 | bitr3d 255 | . . . . . . . . . . 11 |
26 | 12, 13, 15, 25 | syl3an 1270 | . . . . . . . . . 10 |
27 | 26 | 3expb 1197 | . . . . . . . . 9 |
28 | 27 | 3impa 1191 | . . . . . . . 8 |
29 | 28 | 3coml 1203 | . . . . . . 7 |
30 | 29 | 3expia 1198 | . . . . . 6 |
31 | 30 | 3impb 1192 | . . . . 5 |
32 | 31 | imp 429 | . . . 4 |
33 | 32 | biimpd 207 | . . 3 |
34 | 7, 8, 9, 33 | dvds1lem 13995 | . 2 |
35 | dvdscmul 14010 | . . 3 | |
36 | 35 | 3adant3r 1225 | . 2 |
37 | 34, 36 | impbid 191 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 =/= wne 2652 class class class wbr 4452
(class class class)co 6296 cc 9511 0 cc0 9513 cmul 9518 cz 10889 cdvds 13986 |
This theorem is referenced by: bitsmod 14086 mulgcd 14184 pcpremul 14367 4sqlem17 14479 odmulg 16578 ablfacrp2 17118 ablfac1b 17121 pgpfac1lem3a 17127 znrrg 18604 fsumdvdsdiaglem 23459 oddpwdc 28293 jm2.20nn 30939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-dvds 13987 |
Copyright terms: Public domain | W3C validator |