![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dvdslelem | Unicode version |
Description: Lemma for dvdsle 14031. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvdslelem.1 | |
dvdslelem.2 | |
dvdslelem.3 |
Ref | Expression |
---|---|
dvdslelem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdslelem.3 | . . . . . 6 | |
2 | 1 | zrei 10895 | . . . . 5 |
3 | 0re 9617 | . . . . 5 | |
4 | lelttric 9712 | . . . . 5 | |
5 | 2, 3, 4 | mp2an 672 | . . . 4 |
6 | zgt0ge1 10942 | . . . . . 6 | |
7 | 1, 6 | ax-mp 5 | . . . . 5 |
8 | 7 | orbi2i 519 | . . . 4 |
9 | 5, 8 | mpbi 208 | . . 3 |
10 | le0neg1 10085 | . . . . . . . . 9 | |
11 | 2, 10 | ax-mp 5 | . . . . . . . 8 |
12 | dvdslelem.2 | . . . . . . . . . . . 12 | |
13 | 12 | nngt0i 10594 | . . . . . . . . . . 11 |
14 | 12 | nnrei 10570 | . . . . . . . . . . . 12 |
15 | dvdslelem.1 | . . . . . . . . . . . . 13 | |
16 | 15 | zrei 10895 | . . . . . . . . . . . 12 |
17 | 3, 14, 16 | lttri 9731 | . . . . . . . . . . 11 |
18 | 13, 17 | mpan 670 | . . . . . . . . . 10 |
19 | 3, 16 | ltlei 9727 | . . . . . . . . . 10 |
20 | 18, 19 | syl 16 | . . . . . . . . 9 |
21 | 2 | renegcli 9903 | . . . . . . . . . 10 |
22 | 21, 16 | mulge0i 10125 | . . . . . . . . 9 |
23 | 20, 22 | sylan2 474 | . . . . . . . 8 |
24 | 11, 23 | sylanb 472 | . . . . . . 7 |
25 | 24 | expcom 435 | . . . . . 6 |
26 | 2, 16 | remulcli 9631 | . . . . . . . 8 |
27 | le0neg1 10085 | . . . . . . . 8 | |
28 | 26, 27 | ax-mp 5 | . . . . . . 7 |
29 | 2 | recni 9629 | . . . . . . . . 9 |
30 | 16 | recni 9629 | . . . . . . . . 9 |
31 | 29, 30 | mulneg1i 10027 | . . . . . . . 8 |
32 | 31 | breq2i 4460 | . . . . . . 7 |
33 | 28, 32 | bitr4i 252 | . . . . . 6 |
34 | 25, 33 | syl6ibr 227 | . . . . 5 |
35 | 26, 3, 14 | lelttri 9732 | . . . . . 6 |
36 | 13, 35 | mpan2 671 | . . . . 5 |
37 | 34, 36 | syl6 33 | . . . 4 |
38 | lemulge12 10430 | . . . . . . . 8 | |
39 | 16, 2, 38 | mpanl12 682 | . . . . . . 7 |
40 | 20, 39 | sylan 471 | . . . . . 6 |
41 | 40 | ex 434 | . . . . 5 |
42 | 14, 16, 26 | ltletri 9733 | . . . . . 6 |
43 | 42 | ex 434 | . . . . 5 |
44 | 41, 43 | syld 44 | . . . 4 |
45 | 37, 44 | orim12d 838 | . . 3 |
46 | 9, 45 | mpi 17 | . 2 |
47 | 26, 14 | lttri2i 9719 | . 2 |
48 | 46, 47 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
\/ wo 368 /\ wa 369 e. wcel 1818
=/= wne 2652 class class class wbr 4452
(class class class)co 6296 cr 9512 0 cc0 9513 1 c1 9514
cmul 9518 clt 9649 cle 9650 -u cneg 9829 cn 10561 cz 10889 |
This theorem is referenced by: dvdsle 14031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 |
Copyright terms: Public domain | W3C validator |