![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dvdsmulgcd | Unicode version |
Description: A divisibility equivalent for odmulg 16578. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
dvdsmulgcd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 755 | . . . 4 | |
2 | dvdszrcl 13991 | . . . . . 6 | |
3 | 2 | adantl 466 | . . . . 5 |
4 | 3 | simpld 459 | . . . 4 |
5 | bezout 14180 | . . . 4 | |
6 | 1, 4, 5 | syl2anc 661 | . . 3 |
7 | 4 | adantr 465 | . . . . . . 7 |
8 | simplll 759 | . . . . . . . 8 | |
9 | simpllr 760 | . . . . . . . . 9 | |
10 | simprl 756 | . . . . . . . . 9 | |
11 | 9, 10 | zmulcld 11000 | . . . . . . . 8 |
12 | 8, 11 | zmulcld 11000 | . . . . . . 7 |
13 | simprr 757 | . . . . . . . . 9 | |
14 | 7, 13 | zmulcld 11000 | . . . . . . . 8 |
15 | 8, 14 | zmulcld 11000 | . . . . . . 7 |
16 | simplr 755 | . . . . . . . . 9 | |
17 | 8, 9 | zmulcld 11000 | . . . . . . . . . 10 |
18 | dvdsmultr1 14019 | . . . . . . . . . 10 | |
19 | 7, 17, 10, 18 | syl3anc 1228 | . . . . . . . . 9 |
20 | 16, 19 | mpd 15 | . . . . . . . 8 |
21 | 8 | zcnd 10995 | . . . . . . . . 9 |
22 | 9 | zcnd 10995 | . . . . . . . . 9 |
23 | 10 | zcnd 10995 | . . . . . . . . 9 |
24 | 21, 22, 23 | mulassd 9640 | . . . . . . . 8 |
25 | 20, 24 | breqtrd 4476 | . . . . . . 7 |
26 | 8, 13 | zmulcld 11000 | . . . . . . . . 9 |
27 | dvdsmul1 14005 | . . . . . . . . 9 | |
28 | 7, 26, 27 | syl2anc 661 | . . . . . . . 8 |
29 | 7 | zcnd 10995 | . . . . . . . . 9 |
30 | 13 | zcnd 10995 | . . . . . . . . 9 |
31 | 21, 29, 30 | mul12d 9810 | . . . . . . . 8 |
32 | 28, 31 | breqtrrd 4478 | . . . . . . 7 |
33 | dvds2add 14015 | . . . . . . . 8 | |
34 | 33 | imp 429 | . . . . . . 7 |
35 | 7, 12, 15, 25, 32, 34 | syl32anc 1236 | . . . . . 6 |
36 | 11 | zcnd 10995 | . . . . . . 7 |
37 | 14 | zcnd 10995 | . . . . . . 7 |
38 | 21, 36, 37 | adddid 9641 | . . . . . 6 |
39 | 35, 38 | breqtrrd 4478 | . . . . 5 |
40 | oveq2 6304 | . . . . . 6 | |
41 | 40 | breq2d 4464 | . . . . 5 |
42 | 39, 41 | syl5ibrcom 222 | . . . 4 |
43 | 42 | rexlimdvva 2956 | . . 3 |
44 | 6, 43 | mpd 15 | . 2 |
45 | dvdszrcl 13991 | . . . . 5 | |
46 | 45 | adantl 466 | . . . 4 |
47 | 46 | simpld 459 | . . 3 |
48 | 46 | simprd 463 | . . 3 |
49 | zmulcl 10937 | . . . 4 | |
50 | 49 | adantr 465 | . . 3 |
51 | simpr 461 | . . 3 | |
52 | simplr 755 | . . . . . 6 | |
53 | gcddvds 14153 | . . . . . 6 | |
54 | 52, 47, 53 | syl2anc 661 | . . . . 5 |
55 | 54 | simpld 459 | . . . 4 |
56 | 52, 47 | gcdcld 14156 | . . . . . 6 |
57 | 56 | nn0zd 10992 | . . . . 5 |
58 | simpll 753 | . . . . 5 | |
59 | dvdscmul 14010 | . . . . 5 | |
60 | 57, 52, 58, 59 | syl3anc 1228 | . . . 4 |
61 | 55, 60 | mpd 15 | . . 3 |
62 | dvdstr 14018 | . . . 4 | |
63 | 62 | imp 429 | . . 3 |
64 | 47, 48, 50, 51, 61, 63 | syl32anc 1236 | . 2 |
65 | 44, 64 | impbida 832 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 E. wrex 2808 class class class wbr 4452
(class class class)co 6296 caddc 9516 cmul 9518 cz 10889 cdvds 13986 cgcd 14144 |
This theorem is referenced by: odmulg 16578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-sup 7921 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fl 11929 df-mod 11997 df-seq 12108 df-exp 12167 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-dvds 13987 df-gcd 14145 |
Copyright terms: Public domain | W3C validator |