Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdszrcl Unicode version

Theorem dvdszrcl 13991
 Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Assertion
Ref Expression
dvdszrcl

Proof of Theorem dvdszrcl
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvds 13987 . . 3
2 opabssxp 5079 . . 3
31, 2eqsstri 3533 . 2
43brel 5053 1
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  /\wa 369  =wceq 1395  e.wcel 1818  E.wrex 2808   class class class wbr 4452  {copab 4509  X.cxp 5002  (class class class)co 6296   cmul 9518   cz 10889   cdvds 13986 This theorem is referenced by:  dvdsmulgcd  14192  oddvdsi  16572  odmulg  16578  gexdvdsi  16603  numclwwlk8  25115  nzss  31222  nzin  31223 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-xp 5010  df-dvds 13987
 Copyright terms: Public domain W3C validator