MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveel2 Unicode version

Theorem dveel2 2112
Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
dveel2
Distinct variable group:   ,

Proof of Theorem dveel2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elequ2 1823 . 2
21dvelimv 2080 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  A.wal 1393
This theorem is referenced by:  axc14  2113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator