MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveeq1-o Unicode version

Theorem dveeq1-o 2265
Description: Quantifier introduction when one pair of variables is distinct. Version of dveeq1 2044 using ax-c11 . (Contributed by NM, 2-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dveeq1-o
Distinct variable group:   ,

Proof of Theorem dveeq1-o
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ax-5 1704 . 2
2 ax-5 1704 . 2
3 equequ1 1798 . 2
41, 2, 3dvelimf-o 2259 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  A.wal 1393
This theorem is referenced by:  ax12inda2ALT  2276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-c5 2214  ax-c4 2215  ax-c7 2216  ax-c11 2218  ax-c9 2221
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator