MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveeq1 Unicode version

Theorem dveeq1 2044
Description: Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) Remove dependency on ax-11 1842. (Revised by Wolf Lammen, 8-Sep-2018.)
Assertion
Ref Expression
dveeq1
Distinct variable group:   ,

Proof of Theorem dveeq1
StepHypRef Expression
1 nfeqf1 2043 . 2
21nfrd 1875 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  A.wal 1393
This theorem is referenced by:  nfeqf  2045  axc11nlemOLD  2048  axc11n  2049  axc11nOLD  2050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-12 1854  ax-13 1999
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1613  df-nf 1617
  Copyright terms: Public domain W3C validator