![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dvelimdc | Unicode version |
Description: Deduction form of dvelimc 2643. (Contributed by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
dvelimdc.1 | |
dvelimdc.2 | |
dvelimdc.3 | |
dvelimdc.4 | |
dvelimdc.5 |
Ref | Expression |
---|---|
dvelimdc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1707 | . . 3 | |
2 | dvelimdc.1 | . . . . 5 | |
3 | dvelimdc.2 | . . . . 5 | |
4 | dvelimdc.3 | . . . . . 6 | |
5 | 4 | nfcrd 2625 | . . . . 5 |
6 | dvelimdc.4 | . . . . . 6 | |
7 | 6 | nfcrd 2625 | . . . . 5 |
8 | dvelimdc.5 | . . . . . 6 | |
9 | eleq2 2530 | . . . . . 6 | |
10 | 8, 9 | syl6 33 | . . . . 5 |
11 | 2, 3, 5, 7, 10 | dvelimdf 2077 | . . . 4 |
12 | 11 | imp 429 | . . 3 |
13 | 1, 12 | nfcd 2613 | . 2 |
14 | 13 | ex 434 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 A. wal 1393
= wceq 1395 F/ wnf 1616 e. wcel 1818
F/_ wnfc 2605 |
This theorem is referenced by: dvelimc 2643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 df-cleq 2449 df-clel 2452 df-nfc 2607 |
Copyright terms: Public domain | W3C validator |