![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > dvelimhw | Unicode version |
Description: Proof of dvelimh 2078 without using ax-13 1999 but with additional distinct variable conditions. (Contributed by Andrew Salmon, 21-Jul-2011.) (Revised by NM, 1-Aug-2017.) (Proof shortened by Wolf Lammen, 23-Dec-2018.) |
Ref | Expression |
---|---|
dvelimhw.1 | |
dvelimhw.2 | |
dvelimhw.3 | |
dvelimhw.4 |
Ref | Expression |
---|---|
dvelimhw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1707 | . . . 4 | |
2 | equcom 1794 | . . . . . 6 | |
3 | nfna1 1903 | . . . . . . 7 | |
4 | dvelimhw.4 | . . . . . . 7 | |
5 | 3, 4 | nfd 1878 | . . . . . 6 |
6 | 2, 5 | nfxfrd 1646 | . . . . 5 |
7 | dvelimhw.1 | . . . . . . 7 | |
8 | 7 | nfi 1623 | . . . . . 6 |
9 | 8 | a1i 11 | . . . . 5 |
10 | 6, 9 | nfimd 1917 | . . . 4 |
11 | 1, 10 | nfald 1951 | . . 3 |
12 | dvelimhw.2 | . . . . 5 | |
13 | dvelimhw.3 | . . . . 5 | |
14 | 12, 13 | equsalhw 1945 | . . . 4 |
15 | 14 | nfbii 1644 | . . 3 |
16 | 11, 15 | sylib 196 | . 2 |
17 | 16 | nfrd 1875 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 A. wal 1393 F/ wnf 1616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 |
This theorem depends on definitions: df-bi 185 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |