![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ecase2d | Unicode version |
Description: Deduction for elimination by cases. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 22-Dec-2012.) |
Ref | Expression |
---|---|
ecase2d.1 | |
ecase2d.2 | |
ecase2d.3 | |
ecase2d.4 |
Ref | Expression |
---|---|
ecase2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 | |
2 | ecase2d.1 | . . . 4 | |
3 | ecase2d.2 | . . . . 5 | |
4 | 3 | pm2.21d 106 | . . . 4 |
5 | 2, 4 | mpand 675 | . . 3 |
6 | ecase2d.3 | . . . . 5 | |
7 | 6 | pm2.21d 106 | . . . 4 |
8 | 2, 7 | mpand 675 | . . 3 |
9 | 5, 8 | jaod 380 | . 2 |
10 | ecase2d.4 | . 2 | |
11 | 1, 9, 10 | mpjaod 381 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 |
Copyright terms: Public domain | W3C validator |