![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ecdmn0 | Unicode version |
Description: A representative of a nonempty equivalence class belongs to the domain of the equivalence relation. (Contributed by NM, 15-Feb-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
ecdmn0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . 2 | |
2 | n0 3794 | . . 3 | |
3 | ecexr 7335 | . . . 4 | |
4 | 3 | exlimiv 1722 | . . 3 |
5 | 2, 4 | sylbi 195 | . 2 |
6 | vex 3112 | . . . . 5 | |
7 | elecg 7369 | . . . . 5 | |
8 | 6, 7 | mpan 670 | . . . 4 |
9 | 8 | exbidv 1714 | . . 3 |
10 | 2 | a1i 11 | . . 3 |
11 | eldmg 5203 | . . 3 | |
12 | 9, 10, 11 | 3bitr4rd 286 | . 2 |
13 | 1, 5, 12 | pm5.21nii 353 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 E. wex 1612
e. wcel 1818 =/= wne 2652 cvv 3109
c0 3784 class class class wbr 4452
dom cdm 5004 [ cec 7328 |
This theorem is referenced by: ereldm 7374 elqsn0 7399 ecelqsdm 7400 eceqoveq 7435 divsfval 14944 sylow1lem5 16622 vitalilem2 22018 vitalilem3 22019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-xp 5010 df-cnv 5012 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-ec 7332 |
Copyright terms: Public domain | W3C validator |