MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecelqsi Unicode version

Theorem ecelqsi 7386
Description: Membership of an equivalence class in a quotient set. (Contributed by NM, 25-Jul-1995.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
ecelqsi.1
Assertion
Ref Expression
ecelqsi

Proof of Theorem ecelqsi
StepHypRef Expression
1 ecelqsi.1 . 2
2 ecelqsg 7385 . 2
31, 2mpan 670 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  e.wcel 1818   cvv 3109  [cec 7328  /.cqs 7329
This theorem is referenced by:  ecopqsi  7387  addsrpr  9473  mulsrpr  9474  0r  9478  1sr  9479  m1r  9480  addclsr  9481  mulclsr  9482  quseccl  16257  orbsta  16351  frgpeccl  16779  qustgphaus  20621  vitalilem2  22018  vitalilem3  22019  pstmfval  27875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691  ax-un 6592
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-xp 5010  df-cnv 5012  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-ec 7332  df-qs 7336
  Copyright terms: Public domain W3C validator