![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eceqoveq | Unicode version |
Description: Equality of equivalence relation in terms of an operation. (Contributed by NM, 15-Feb-1996.) (Proof shortened by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
eceqoveq.5 | |
eceqoveq.7 | |
eceqoveq.8 | |
eceqoveq.9 | |
eceqoveq.10 |
Ref | Expression |
---|---|
eceqoveq |
S
, ,, ,, ,, ,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 5036 | . . . . . . . 8 | |
2 | 1 | ad2antrr 725 | . . . . . . 7 |
3 | eceqoveq.5 | . . . . . . . . 9 | |
4 | 3 | a1i 11 | . . . . . . . 8 |
5 | simpr 461 | . . . . . . . 8 | |
6 | 4, 5 | ereldm 7374 | . . . . . . 7 |
7 | 2, 6 | mpbid 210 | . . . . . 6 |
8 | opelxp2 5038 | . . . . . 6 | |
9 | 7, 8 | syl 16 | . . . . 5 |
10 | 9 | ex 434 | . . . 4 |
11 | eceqoveq.9 | . . . . . . . 8 | |
12 | 11 | caovcl 6469 | . . . . . . 7 |
13 | eleq1 2529 | . . . . . . 7 | |
14 | 12, 13 | syl5ibr 221 | . . . . . 6 |
15 | eceqoveq.7 | . . . . . . . 8 | |
16 | eceqoveq.8 | . . . . . . . 8 | |
17 | 15, 16 | ndmovrcl 6461 | . . . . . . 7 |
18 | 17 | simprd 463 | . . . . . 6 |
19 | 14, 18 | syl6com 35 | . . . . 5 |
20 | 19 | adantll 713 | . . . 4 |
21 | 3 | a1i 11 | . . . . . . 7 |
22 | 1 | adantr 465 | . . . . . . 7 |
23 | 21, 22 | erth 7375 | . . . . . 6 |
24 | eceqoveq.10 | . . . . . 6 | |
25 | 23, 24 | bitr3d 255 | . . . . 5 |
26 | 25 | expr 615 | . . . 4 |
27 | 10, 20, 26 | pm5.21ndd 354 | . . 3 |
28 | 27 | an32s 804 | . 2 |
29 | eqcom 2466 | . . . 4 | |
30 | erdm 7340 | . . . . . . . . . . . 12 | |
31 | 3, 30 | ax-mp 5 | . . . . . . . . . . 11 |
32 | 31 | eleq2i 2535 | . . . . . . . . . 10 |
33 | ecdmn0 7373 | . . . . . . . . . 10 | |
34 | opelxp 5034 | . . . . . . . . . 10 | |
35 | 32, 33, 34 | 3bitr3i 275 | . . . . . . . . 9 |
36 | 35 | simplbi2 625 | . . . . . . . 8 |
37 | 36 | ad2antlr 726 | . . . . . . 7 |
38 | 37 | necon2bd 2672 | . . . . . 6 |
39 | simpr 461 | . . . . . . . 8 | |
40 | 39 | con3i 135 | . . . . . . 7 |
41 | 15 | ndmov 6459 | . . . . . . 7 |
42 | 40, 41 | syl 16 | . . . . . 6 |
43 | 38, 42 | syl6 33 | . . . . 5 |
44 | eleq1 2529 | . . . . . . 7 | |
45 | 16, 44 | mtbiri 303 | . . . . . 6 |
46 | 35 | simprbi 464 | . . . . . . . 8 |
47 | 11 | caovcl 6469 | . . . . . . . . . 10 |
48 | 47 | ex 434 | . . . . . . . . 9 |
49 | 48 | ad2antrr 725 | . . . . . . . 8 |
50 | 46, 49 | syl5 32 | . . . . . . 7 |
51 | 50 | necon1bd 2675 | . . . . . 6 |
52 | 45, 51 | syl5 32 | . . . . 5 |
53 | 43, 52 | impbid 191 | . . . 4 |
54 | 29, 53 | syl5bb 257 | . . 3 |
55 | 31 | eleq2i 2535 | . . . . . . . 8 |
56 | ecdmn0 7373 | . . . . . . . 8 | |
57 | opelxp 5034 | . . . . . . . 8 | |
58 | 55, 56, 57 | 3bitr3i 275 | . . . . . . 7 |
59 | 58 | simprbi 464 | . . . . . 6 |
60 | 59 | necon1bi 2690 | . . . . 5 |
61 | 60 | adantl 466 | . . . 4 |
62 | 61 | eqeq1d 2459 | . . 3 |
63 | simpl 457 | . . . . . . 7 | |
64 | 63 | con3i 135 | . . . . . 6 |
65 | 15 | ndmov 6459 | . . . . . 6 |
66 | 64, 65 | syl 16 | . . . . 5 |
67 | 66 | adantl 466 | . . . 4 |
68 | 67 | eqeq2d 2471 | . . 3 |
69 | 54, 62, 68 | 3bitr4d 285 | . 2 |
70 | 28, 69 | pm2.61dan 791 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 c0 3784 <. cop 4035 class class class wbr 4452
X. cxp 5002 dom cdm 5004 (class class class)co 6296
Er wer 7327 [ cec 7328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fv 5601 df-ov 6299 df-er 7330 df-ec 7332 |
Copyright terms: Public domain | W3C validator |