MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecexr Unicode version

Theorem ecexr 7335
Description: A nonempty equivalence class implies the representative is a set. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
ecexr

Proof of Theorem ecexr
StepHypRef Expression
1 n0i 3789 . . 3
2 snprc 4093 . . . . 5
3 imaeq2 5338 . . . . 5
42, 3sylbi 195 . . . 4
5 ima0 5357 . . . 4
64, 5syl6eq 2514 . . 3
71, 6nsyl2 127 . 2
8 df-ec 7332 . 2
97, 8eleq2s 2565 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  =wceq 1395  e.wcel 1818   cvv 3109   c0 3784  {csn 4029  "cima 5007  [cec 7328
This theorem is referenced by:  relelec  7371  ecdmn0  7373  erdisj  7378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-xp 5010  df-cnv 5012  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-ec 7332
  Copyright terms: Public domain W3C validator