![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ecopoveq | Unicode version |
Description: This is the first of several theorems about equivalence relations of the kind used in construction of fractions and signed reals, involving operations on equivalent classes of ordered pairs. This theorem expresses the relation (specified by the hypothesis) in terms of its operation . (Contributed by NM, 16-Aug-1995.) |
Ref | Expression |
---|---|
ecopopr.1 |
Ref | Expression |
---|---|
ecopoveq |
S
,,,,, ,,,,,, ,,,,,, ,,,,,, ,,,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq12 6305 | . . . 4 | |
2 | oveq12 6305 | . . . 4 | |
3 | 1, 2 | eqeqan12d 2480 | . . 3 |
4 | 3 | an42s 827 | . 2 |
5 | ecopopr.1 | . 2 | |
6 | 4, 5 | opbrop 5084 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 E. wex 1612
e. wcel 1818 <. cop 4035 class class class wbr 4452
{ copab 4509 X. cxp 5002
(class class class)co 6296 |
This theorem is referenced by: ecopovsym 7432 ecopovtrn 7433 ecopover 7434 enqbreq 9318 enrbreq 9462 prsrlem1 9470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-xp 5010 df-iota 5556 df-fv 5601 df-ov 6299 |
Copyright terms: Public domain | W3C validator |