![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ecopovtrn | Unicode version |
Description: Assuming that operation is commutative (second hypothesis), closed (third hypothesis), associative (fourth hypothesis), and has the cancellation property (fifth hypothesis), show that the relation , specified by the first hypothesis, is transitive. (Contributed by NM, 11-Feb-1996.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
ecopopr.1 | |
ecopopr.com | |
ecopopr.cl | |
ecopopr.ass | |
ecopopr.can |
Ref | Expression |
---|---|
ecopovtrn |
S
,,,,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecopopr.1 | . . . . . . 7 | |
2 | opabssxp 5079 | . . . . . . 7 | |
3 | 1, 2 | eqsstri 3533 | . . . . . 6 |
4 | 3 | brel 5053 | . . . . 5 |
5 | 4 | simpld 459 | . . . 4 |
6 | 3 | brel 5053 | . . . 4 |
7 | 5, 6 | anim12i 566 | . . 3 |
8 | 3anass 977 | . . 3 | |
9 | 7, 8 | sylibr 212 | . 2 |
10 | eqid 2457 | . . 3 | |
11 | breq1 4455 | . . . . 5 | |
12 | 11 | anbi1d 704 | . . . 4 |
13 | breq1 4455 | . . . 4 | |
14 | 12, 13 | imbi12d 320 | . . 3 |
15 | breq2 4456 | . . . . 5 | |
16 | breq1 4455 | . . . . 5 | |
17 | 15, 16 | anbi12d 710 | . . . 4 |
18 | 17 | imbi1d 317 | . . 3 |
19 | breq2 4456 | . . . . 5 | |
20 | 19 | anbi2d 703 | . . . 4 |
21 | breq2 4456 | . . . 4 | |
22 | 20, 21 | imbi12d 320 | . . 3 |
23 | 1 | ecopoveq 7431 | . . . . . . . 8 |
24 | 23 | 3adant3 1016 | . . . . . . 7 |
25 | 1 | ecopoveq 7431 | . . . . . . . 8 |
26 | 25 | 3adant1 1014 | . . . . . . 7 |
27 | 24, 26 | anbi12d 710 | . . . . . 6 |
28 | oveq12 6305 | . . . . . . 7 | |
29 | vex 3112 | . . . . . . . 8 | |
30 | vex 3112 | . . . . . . . 8 | |
31 | vex 3112 | . . . . . . . 8 | |
32 | ecopopr.com | . . . . . . . 8 | |
33 | ecopopr.ass | . . . . . . . 8 | |
34 | vex 3112 | . . . . . . . 8 | |
35 | 29, 30, 31, 32, 33, 34 | caov411 6507 | . . . . . . 7 |
36 | vex 3112 | . . . . . . . . 9 | |
37 | vex 3112 | . . . . . . . . 9 | |
38 | 36, 30, 29, 32, 33, 37 | caov411 6507 | . . . . . . . 8 |
39 | 36, 30, 29, 32, 33, 37 | caov4 6506 | . . . . . . . 8 |
40 | 38, 39 | eqtr3i 2488 | . . . . . . 7 |
41 | 28, 35, 40 | 3eqtr4g 2523 | . . . . . 6 |
42 | 27, 41 | syl6bi 228 | . . . . 5 |
43 | ecopopr.cl | . . . . . . . . . . 11 | |
44 | 43 | caovcl 6469 | . . . . . . . . . 10 |
45 | 43 | caovcl 6469 | . . . . . . . . . 10 |
46 | ovex 6324 | . . . . . . . . . . 11 | |
47 | ecopopr.can | . . . . . . . . . . 11 | |
48 | 46, 47 | caovcan 6479 | . . . . . . . . . 10 |
49 | 44, 45, 48 | syl2an 477 | . . . . . . . . 9 |
50 | 49 | 3impb 1192 | . . . . . . . 8 |
51 | 50 | 3com12 1200 | . . . . . . 7 |
52 | 51 | 3adant3l 1224 | . . . . . 6 |
53 | 52 | 3adant1r 1221 | . . . . 5 |
54 | 42, 53 | syld 44 | . . . 4 |
55 | 1 | ecopoveq 7431 | . . . . 5 |
56 | 55 | 3adant2 1015 | . . . 4 |
57 | 54, 56 | sylibrd 234 | . . 3 |
58 | 10, 14, 18, 22, 57 | 3optocl 5083 | . 2 |
59 | 9, 58 | mpcom 36 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
E. wex 1612 e. wcel 1818 <. cop 4035
class class class wbr 4452 { copab 4509 X. cxp 5002
(class class class)co 6296 |
This theorem is referenced by: ecopover 7434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-xp 5010 df-iota 5556 df-fv 5601 df-ov 6299 |
Copyright terms: Public domain | W3C validator |