![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ecovcom | Unicode version |
Description: Lemma used to transfer a commutative law via an equivalence relation. (Contributed by NM, 29-Aug-1995.) (Revised by David Abernethy, 4-Jun-2013.) |
Ref | Expression |
---|---|
ecovcom.1 | |
ecovcom.2 | |
ecovcom.3 | |
ecovcom.4 | |
ecovcom.5 |
Ref | Expression |
---|---|
ecovcom |
S
,,, ,,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecovcom.1 | . 2 | |
2 | oveq1 6303 | . . 3 | |
3 | oveq2 6304 | . . 3 | |
4 | 2, 3 | eqeq12d 2479 | . 2 |
5 | oveq2 6304 | . . 3 | |
6 | oveq1 6303 | . . 3 | |
7 | 5, 6 | eqeq12d 2479 | . 2 |
8 | ecovcom.4 | . . . 4 | |
9 | ecovcom.5 | . . . 4 | |
10 | opeq12 4219 | . . . . 5 | |
11 | 10 | eceq1d 7367 | . . . 4 |
12 | 8, 9, 11 | mp2an 672 | . . 3 |
13 | ecovcom.2 | . . 3 | |
14 | ecovcom.3 | . . . 4 | |
15 | 14 | ancoms 453 | . . 3 |
16 | 12, 13, 15 | 3eqtr4a 2524 | . 2 |
17 | 1, 4, 7, 16 | 2ecoptocl 7421 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 <. cop 4035
X. cxp 5002 (class class class)co 6296
[ cec 7328 /. cqs 7329 |
This theorem is referenced by: addcomsr 9485 mulcomsr 9487 axmulcom 9553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-xp 5010 df-cnv 5012 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fv 5601 df-ov 6299 df-ec 7332 df-qs 7336 |
Copyright terms: Public domain | W3C validator |