![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > ef0lem | Unicode version |
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.) |
Ref | Expression |
---|---|
eftval.1 |
Ref | Expression |
---|---|
ef0lem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 461 | . . . . . 6 | |
2 | nn0uz 11144 | . . . . . 6 | |
3 | 1, 2 | syl6eleqr 2556 | . . . . 5 |
4 | elnn0 10822 | . . . . 5 | |
5 | 3, 4 | sylib 196 | . . . 4 |
6 | nnnn0 10827 | . . . . . . . . 9 | |
7 | 6 | adantl 466 | . . . . . . . 8 |
8 | eftval.1 | . . . . . . . . 9 | |
9 | 8 | eftval 13812 | . . . . . . . 8 |
10 | 7, 9 | syl 16 | . . . . . . 7 |
11 | oveq1 6303 | . . . . . . . . 9 | |
12 | 0exp 12201 | . . . . . . . . 9 | |
13 | 11, 12 | sylan9eq 2518 | . . . . . . . 8 |
14 | 13 | oveq1d 6311 | . . . . . . 7 |
15 | faccl 12363 | . . . . . . . 8 | |
16 | nncn 10569 | . . . . . . . . 9 | |
17 | nnne0 10593 | . . . . . . . . 9 | |
18 | 16, 17 | div0d 10344 | . . . . . . . 8 |
19 | 7, 15, 18 | 3syl 20 | . . . . . . 7 |
20 | 10, 14, 19 | 3eqtrd 2502 | . . . . . 6 |
21 | nnne0 10593 | . . . . . . . . 9 | |
22 | elsn 4043 | . . . . . . . . . 10 | |
23 | 22 | necon3bbii 2718 | . . . . . . . . 9 |
24 | 21, 23 | sylibr 212 | . . . . . . . 8 |
25 | 24 | adantl 466 | . . . . . . 7 |
26 | 25 | iffalsed 3952 | . . . . . 6 |
27 | 20, 26 | eqtr4d 2501 | . . . . 5 |
28 | fveq2 5871 | . . . . . . 7 | |
29 | oveq1 6303 | . . . . . . . . . 10 | |
30 | 0exp0e1 12171 | . . . . . . . . . 10 | |
31 | 29, 30 | syl6eq 2514 | . . . . . . . . 9 |
32 | 31 | oveq1d 6311 | . . . . . . . 8 |
33 | 0nn0 10835 | . . . . . . . . 9 | |
34 | 8 | eftval 13812 | . . . . . . . . 9 |
35 | 33, 34 | ax-mp 5 | . . . . . . . 8 |
36 | fac0 12356 | . . . . . . . . . 10 | |
37 | 36 | oveq2i 6307 | . . . . . . . . 9 |
38 | 1div1e1 10262 | . . . . . . . . 9 | |
39 | 37, 38 | eqtr2i 2487 | . . . . . . . 8 |
40 | 32, 35, 39 | 3eqtr4g 2523 | . . . . . . 7 |
41 | 28, 40 | sylan9eqr 2520 | . . . . . 6 |
42 | simpr 461 | . . . . . . . 8 | |
43 | 42, 22 | sylibr 212 | . . . . . . 7 |
44 | 43 | iftrued 3949 | . . . . . 6 |
45 | 41, 44 | eqtr4d 2501 | . . . . 5 |
46 | 27, 45 | jaodan 785 | . . . 4 |
47 | 5, 46 | syldan 470 | . . 3 |
48 | 33, 2 | eleqtri 2543 | . . . 4 |
49 | 48 | a1i 11 | . . 3 |
50 | 1cnd 9633 | . . 3 | |
51 | 0z 10900 | . . . . . 6 | |
52 | fzsn 11754 | . . . . . 6 | |
53 | 51, 52 | ax-mp 5 | . . . . 5 |
54 | 53 | eqimss2i 3558 | . . . 4 |
55 | 54 | a1i 11 | . . 3 |
56 | 47, 49, 50, 55 | fsumcvg2 13549 | . 2 |
57 | 51, 40 | seq1i 12121 | . 2 |
58 | 56, 57 | breqtrd 4476 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
\/ wo 368 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 C_ wss 3475
if cif 3941 { csn 4029 class class class wbr 4452
e. cmpt 4510 ` cfv 5593 (class class class)co 6296
0 cc0 9513 1 c1 9514 caddc 9516 cdiv 10231 cn 10561 cn0 10820
cz 10889 cuz 11110
cfz 11701 seq cseq 12107 cexp 12166 cfa 12353 cli 13307 |
This theorem is referenced by: ef0 13826 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-fz 11702 df-seq 12108 df-exp 12167 df-fac 12354 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-clim 13311 |
Copyright terms: Public domain | W3C validator |