![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > effsumlt | Unicode version |
Description: The partial sums of the series expansion of the exponential function of a positive real number are bounded by the value of the function. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 29-Apr-2014.) |
Ref | Expression |
---|---|
effsumlt.1 | |
effsumlt.2 | |
effsumlt.3 |
Ref | Expression |
---|---|
effsumlt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 11144 | . . . . 5 | |
2 | 0zd 10901 | . . . . 5 | |
3 | effsumlt.1 | . . . . . . . 8 | |
4 | 3 | eftval 13812 | . . . . . . 7 |
5 | 4 | adantl 466 | . . . . . 6 |
6 | effsumlt.2 | . . . . . . . 8 | |
7 | 6 | rpred 11285 | . . . . . . 7 |
8 | reeftcl 13810 | . . . . . . 7 | |
9 | 7, 8 | sylan 471 | . . . . . 6 |
10 | 5, 9 | eqeltrd 2545 | . . . . 5 |
11 | 1, 2, 10 | serfre 12136 | . . . 4 |
12 | effsumlt.3 | . . . 4 | |
13 | 11, 12 | ffvelrnd 6032 | . . 3 |
14 | eqid 2457 | . . . 4 | |
15 | peano2nn0 10861 | . . . . 5 | |
16 | 12, 15 | syl 16 | . . . 4 |
17 | eqidd 2458 | . . . 4 | |
18 | nn0z 10912 | . . . . . . 7 | |
19 | rpexpcl 12185 | . . . . . . 7 | |
20 | 6, 18, 19 | syl2an 477 | . . . . . 6 |
21 | faccl 12363 | . . . . . . . 8 | |
22 | 21 | adantl 466 | . . . . . . 7 |
23 | 22 | nnrpd 11284 | . . . . . 6 |
24 | 20, 23 | rpdivcld 11302 | . . . . 5 |
25 | 5, 24 | eqeltrd 2545 | . . . 4 |
26 | 7 | recnd 9643 | . . . . 5 |
27 | 3 | efcllem 13813 | . . . . 5 |
28 | 26, 27 | syl 16 | . . . 4 |
29 | 1, 14, 16, 17, 25, 28 | isumrpcl 13655 | . . 3 |
30 | 13, 29 | ltaddrpd 11314 | . 2 |
31 | 3 | efval2 13819 | . . . 4 |
32 | 26, 31 | syl 16 | . . 3 |
33 | 10 | recnd 9643 | . . . 4 |
34 | 1, 14, 16, 17, 33, 28 | isumsplit 13652 | . . 3 |
35 | 12 | nn0cnd 10879 | . . . . . . . 8 |
36 | ax-1cn 9571 | . . . . . . . 8 | |
37 | pncan 9849 | . . . . . . . 8 | |
38 | 35, 36, 37 | sylancl 662 | . . . . . . 7 |
39 | 38 | oveq2d 6312 | . . . . . 6 |
40 | 39 | sumeq1d 13523 | . . . . 5 |
41 | eqidd 2458 | . . . . . 6 | |
42 | 12, 1 | syl6eleq 2555 | . . . . . 6 |
43 | elfznn0 11800 | . . . . . . 7 | |
44 | 43, 33 | sylan2 474 | . . . . . 6 |
45 | 41, 42, 44 | fsumser 13552 | . . . . 5 |
46 | 40, 45 | eqtrd 2498 | . . . 4 |
47 | 46 | oveq1d 6311 | . . 3 |
48 | 32, 34, 47 | 3eqtrd 2502 | . 2 |
49 | 30, 48 | breqtrrd 4478 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 class class class wbr 4452
e. cmpt 4510 dom cdm 5004 ` cfv 5593
(class class class)co 6296 cc 9511 cr 9512 0 cc0 9513 1 c1 9514
caddc 9516 clt 9649 cmin 9828 cdiv 10231 cn 10561 cn0 10820
cz 10889 cuz 11110
crp 11249
cfz 11701 seq cseq 12107 cexp 12166 cfa 12353 cli 13307 sum_ csu 13508 ce 13797 |
This theorem is referenced by: efgt1p2 13849 efgt1p 13850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 ax-addf 9592 ax-mulf 9593 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-ico 11564 df-fz 11702 df-fzo 11825 df-fl 11929 df-seq 12108 df-exp 12167 df-fac 12354 df-hash 12406 df-shft 12900 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-limsup 13294 df-clim 13311 df-rlim 13312 df-sum 13509 df-ef 13803 |
Copyright terms: Public domain | W3C validator |