![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > efi4p | Unicode version |
Description: Separate out the first four terms of the infinite series expansion of the exponential function of an imaginary number. (Contributed by Paul Chapman, 19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.) |
Ref | Expression |
---|---|
efi4p.1 |
Ref | Expression |
---|---|
efi4p |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 9572 | . . . 4 | |
2 | mulcl 9597 | . . . 4 | |
3 | 1, 2 | mpan 670 | . . 3 |
4 | efi4p.1 | . . . 4 | |
5 | 4 | ef4p 13848 | . . 3 |
6 | 3, 5 | syl 16 | . 2 |
7 | ax-1cn 9571 | . . . . . 6 | |
8 | addcl 9595 | . . . . . 6 | |
9 | 7, 3, 8 | sylancr 663 | . . . . 5 |
10 | 3 | sqcld 12308 | . . . . . 6 |
11 | 10 | halfcld 10808 | . . . . 5 |
12 | 3nn0 10838 | . . . . . . 7 | |
13 | expcl 12184 | . . . . . . 7 | |
14 | 3, 12, 13 | sylancl 662 | . . . . . 6 |
15 | 6cn 10642 | . . . . . . 7 | |
16 | 6re 10641 | . . . . . . . 8 | |
17 | 6pos 10659 | . . . . . . . 8 | |
18 | 16, 17 | gt0ne0ii 10114 | . . . . . . 7 |
19 | divcl 10238 | . . . . . . 7 | |
20 | 15, 18, 19 | mp3an23 1316 | . . . . . 6 |
21 | 14, 20 | syl 16 | . . . . 5 |
22 | 9, 11, 21 | addassd 9639 | . . . 4 |
23 | 7 | a1i 11 | . . . . 5 |
24 | 23, 3, 11, 21 | add4d 9826 | . . . 4 |
25 | 2nn0 10837 | . . . . . . . . . . 11 | |
26 | mulexp 12205 | . . . . . . . . . . 11 | |
27 | 1, 25, 26 | mp3an13 1315 | . . . . . . . . . 10 |
28 | i2 12268 | . . . . . . . . . . . 12 | |
29 | 28 | oveq1i 6306 | . . . . . . . . . . 11 |
30 | 29 | a1i 11 | . . . . . . . . . 10 |
31 | sqcl 12230 | . . . . . . . . . . 11 | |
32 | 31 | mulm1d 10033 | . . . . . . . . . 10 |
33 | 27, 30, 32 | 3eqtrd 2502 | . . . . . . . . 9 |
34 | 33 | oveq1d 6311 | . . . . . . . 8 |
35 | 2cn 10631 | . . . . . . . . . 10 | |
36 | 2ne0 10653 | . . . . . . . . . 10 | |
37 | divneg 10264 | . . . . . . . . . 10 | |
38 | 35, 36, 37 | mp3an23 1316 | . . . . . . . . 9 |
39 | 31, 38 | syl 16 | . . . . . . . 8 |
40 | 34, 39 | eqtr4d 2501 | . . . . . . 7 |
41 | 40 | oveq2d 6312 | . . . . . 6 |
42 | 31 | halfcld 10808 | . . . . . . 7 |
43 | negsub 9890 | . . . . . . 7 | |
44 | 7, 42, 43 | sylancr 663 | . . . . . 6 |
45 | 41, 44 | eqtrd 2498 | . . . . 5 |
46 | mulexp 12205 | . . . . . . . . . . 11 | |
47 | 1, 12, 46 | mp3an13 1315 | . . . . . . . . . 10 |
48 | i3 12269 | . . . . . . . . . . 11 | |
49 | 48 | oveq1i 6306 | . . . . . . . . . 10 |
50 | 47, 49 | syl6eq 2514 | . . . . . . . . 9 |
51 | 50 | oveq1d 6311 | . . . . . . . 8 |
52 | expcl 12184 | . . . . . . . . . 10 | |
53 | 12, 52 | mpan2 671 | . . . . . . . . 9 |
54 | negicn 9844 | . . . . . . . . . 10 | |
55 | 15, 18 | pm3.2i 455 | . . . . . . . . . 10 |
56 | divass 10250 | . . . . . . . . . 10 | |
57 | 54, 55, 56 | mp3an13 1315 | . . . . . . . . 9 |
58 | 53, 57 | syl 16 | . . . . . . . 8 |
59 | divcl 10238 | . . . . . . . . . . 11 | |
60 | 15, 18, 59 | mp3an23 1316 | . . . . . . . . . 10 |
61 | 53, 60 | syl 16 | . . . . . . . . 9 |
62 | mulneg12 10020 | . . . . . . . . 9 | |
63 | 1, 61, 62 | sylancr 663 | . . . . . . . 8 |
64 | 51, 58, 63 | 3eqtrd 2502 | . . . . . . 7 |
65 | 64 | oveq2d 6312 | . . . . . 6 |
66 | 61 | negcld 9941 | . . . . . . 7 |
67 | adddi 9602 | . . . . . . . 8 | |
68 | 1, 67 | mp3an1 1311 | . . . . . . 7 |
69 | 66, 68 | mpdan 668 | . . . . . 6 |
70 | negsub 9890 | . . . . . . . 8 | |
71 | 61, 70 | mpdan 668 | . . . . . . 7 |
72 | 71 | oveq2d 6312 | . . . . . 6 |
73 | 65, 69, 72 | 3eqtr2d 2504 | . . . . 5 |
74 | 45, 73 | oveq12d 6314 | . . . 4 |
75 | 22, 24, 74 | 3eqtrd 2502 | . . 3 |
76 | 75 | oveq1d 6311 | . 2 |
77 | 6, 76 | eqtrd 2498 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
e. cmpt 4510 ` cfv 5593 (class class class)co 6296
cc 9511 0 cc0 9513 1 c1 9514
ci 9515
caddc 9516 cmul 9518 cmin 9828 -u cneg 9829 cdiv 10231 2 c2 10610 3 c3 10611
4 c4 10612 6 c6 10614 cn0 10820
cuz 11110
cexp 12166 cfa 12353 sum_ csu 13508 ce 13797 |
This theorem is referenced by: resin4p 13873 recos4p 13874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 ax-addf 9592 ax-mulf 9593 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-4 10621 df-5 10622 df-6 10623 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-ico 11564 df-fz 11702 df-fzo 11825 df-fl 11929 df-seq 12108 df-exp 12167 df-fac 12354 df-hash 12406 df-shft 12900 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-limsup 13294 df-clim 13311 df-rlim 13312 df-sum 13509 df-ef 13803 |
Copyright terms: Public domain | W3C validator |