![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > efieq1re | Unicode version |
Description: A number whose imaginary exponential is one is real. (Contributed by NM, 21-Aug-2008.) |
Ref | Expression |
---|---|
efieq1re |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | replim 12949 | . . . . . . . . 9 | |
2 | 1 | oveq2d 6312 | . . . . . . . 8 |
3 | recl 12943 | . . . . . . . . . . 11 | |
4 | 3 | recnd 9643 | . . . . . . . . . 10 |
5 | ax-icn 9572 | . . . . . . . . . . 11 | |
6 | imcl 12944 | . . . . . . . . . . . 12 | |
7 | 6 | recnd 9643 | . . . . . . . . . . 11 |
8 | mulcl 9597 | . . . . . . . . . . 11 | |
9 | 5, 7, 8 | sylancr 663 | . . . . . . . . . 10 |
10 | adddi 9602 | . . . . . . . . . . 11 | |
11 | 5, 10 | mp3an1 1311 | . . . . . . . . . 10 |
12 | 4, 9, 11 | syl2anc 661 | . . . . . . . . 9 |
13 | ixi 10203 | . . . . . . . . . . . 12 | |
14 | 13 | oveq1i 6306 | . . . . . . . . . . 11 |
15 | mulass 9601 | . . . . . . . . . . . . 13 | |
16 | 5, 5, 15 | mp3an12 1314 | . . . . . . . . . . . 12 |
17 | 7, 16 | syl 16 | . . . . . . . . . . 11 |
18 | 7 | mulm1d 10033 | . . . . . . . . . . 11 |
19 | 14, 17, 18 | 3eqtr3a 2522 | . . . . . . . . . 10 |
20 | 19 | oveq2d 6312 | . . . . . . . . 9 |
21 | 12, 20 | eqtrd 2498 | . . . . . . . 8 |
22 | 2, 21 | eqtrd 2498 | . . . . . . 7 |
23 | 22 | fveq2d 5875 | . . . . . 6 |
24 | mulcl 9597 | . . . . . . . 8 | |
25 | 5, 4, 24 | sylancr 663 | . . . . . . 7 |
26 | 6 | renegcld 10011 | . . . . . . . 8 |
27 | 26 | recnd 9643 | . . . . . . 7 |
28 | efadd 13829 | . . . . . . 7 | |
29 | 25, 27, 28 | syl2anc 661 | . . . . . 6 |
30 | 23, 29 | eqtrd 2498 | . . . . 5 |
31 | 30 | eqeq1d 2459 | . . . 4 |
32 | efcl 13818 | . . . . . . . . 9 | |
33 | 25, 32 | syl 16 | . . . . . . . 8 |
34 | efcl 13818 | . . . . . . . . 9 | |
35 | 27, 34 | syl 16 | . . . . . . . 8 |
36 | 33, 35 | absmuld 13285 | . . . . . . 7 |
37 | absefi 13931 | . . . . . . . . 9 | |
38 | 3, 37 | syl 16 | . . . . . . . 8 |
39 | 26 | reefcld 13823 | . . . . . . . . 9 |
40 | efgt0 13838 | . . . . . . . . . . 11 | |
41 | 26, 40 | syl 16 | . . . . . . . . . 10 |
42 | 0re 9617 | . . . . . . . . . . 11 | |
43 | ltle 9694 | . . . . . . . . . . 11 | |
44 | 42, 43 | mpan 670 | . . . . . . . . . 10 |
45 | 39, 41, 44 | sylc 60 | . . . . . . . . 9 |
46 | 39, 45 | absidd 13254 | . . . . . . . 8 |
47 | 38, 46 | oveq12d 6314 | . . . . . . 7 |
48 | 35 | mulid2d 9635 | . . . . . . 7 |
49 | 36, 47, 48 | 3eqtrrd 2503 | . . . . . 6 |
50 | fveq2 5871 | . . . . . 6 | |
51 | 49, 50 | sylan9eq 2518 | . . . . 5 |
52 | 51 | ex 434 | . . . 4 |
53 | 31, 52 | sylbid 215 | . . 3 |
54 | 7 | negeq0d 9946 | . . . 4 |
55 | reim0b 12952 | . . . 4 | |
56 | ef0 13826 | . . . . . . 7 | |
57 | abs1 13130 | . . . . . . 7 | |
58 | 56, 57 | eqtr4i 2489 | . . . . . 6 |
59 | 58 | eqeq2i 2475 | . . . . 5 |
60 | reef11 13854 | . . . . . 6 | |
61 | 26, 42, 60 | sylancl 662 | . . . . 5 |
62 | 59, 61 | syl5bbr 259 | . . . 4 |
63 | 54, 55, 62 | 3bitr4rd 286 | . . 3 |
64 | 53, 63 | sylibd 214 | . 2 |
65 | 64 | imp 429 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 = wceq 1395 e. wcel 1818
class class class wbr 4452 ` cfv 5593
(class class class)co 6296 cc 9511 cr 9512 0 cc0 9513 1 c1 9514
ci 9515
caddc 9516 cmul 9518 clt 9649 cle 9650 -u cneg 9829 cre 12930 cim 12931 cabs 13067 ce 13797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-rep 4563 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-inf2 8079 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 ax-pre-sup 9591 ax-addf 9592 ax-mulf 9593 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-fal 1401 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rmo 2815 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-int 4287 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-se 4844 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-isom 5602 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-1o 7149 df-oadd 7153 df-er 7330 df-pm 7442 df-en 7537 df-dom 7538 df-sdom 7539 df-fin 7540 df-sup 7921 df-oi 7956 df-card 8341 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-div 10232 df-nn 10562 df-2 10619 df-3 10620 df-n0 10821 df-z 10890 df-uz 11111 df-rp 11250 df-ico 11564 df-fz 11702 df-fzo 11825 df-fl 11929 df-seq 12108 df-exp 12167 df-fac 12354 df-bc 12381 df-hash 12406 df-shft 12900 df-cj 12932 df-re 12933 df-im 12934 df-sqrt 13068 df-abs 13069 df-limsup 13294 df-clim 13311 df-rlim 13312 df-sum 13509 df-ef 13803 df-sin 13805 df-cos 13806 |
Copyright terms: Public domain | W3C validator |