![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > el | Unicode version |
Description: Every set is an element of some other set. See elALT 4695 for a shorter proof using more axioms. (Contributed by NM, 4-Jan-2002.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
el |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfpow 4631 | . 2 | |
2 | ax-9 1822 | . . . . 5 | |
3 | 2 | alrimiv 1719 | . . . 4 |
4 | ax-8 1820 | . . . 4 | |
5 | 3, 4 | embantd 54 | . . 3 |
6 | 5 | spimv 2009 | . 2 |
7 | 1, 6 | eximii 1658 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 A. wal 1393
E. wex 1612 |
This theorem is referenced by: dtru 4643 dvdemo2 4688 axpownd 8999 zfcndinf 9017 domep 29225 distel 29236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-pow 4630 |
This theorem depends on definitions: df-bi 185 df-an 371 df-ex 1613 df-nf 1617 |
Copyright terms: Public domain | W3C validator |