![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > el2xptp0 | Unicode version |
Description: A member of a nested Cartesian product is an ordered triple. (Contributed by Alexander van der Vekens, 15-Feb-2018.) |
Ref | Expression |
---|---|
el2xptp0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xp1st 6830 | . . . . . 6 | |
2 | 1 | ad2antrl 727 | . . . . 5 |
3 | 3simpa 993 | . . . . . . 7 | |
4 | 3 | adantl 466 | . . . . . 6 |
5 | 4 | adantl 466 | . . . . 5 |
6 | eqopi 6834 | . . . . 5 | |
7 | 2, 5, 6 | syl2anc 661 | . . . 4 |
8 | simprr3 1046 | . . . 4 | |
9 | 7, 8 | jca 532 | . . 3 |
10 | df-ot 4038 | . . . . . 6 | |
11 | 10 | eqeq2i 2475 | . . . . 5 |
12 | eqop 6840 | . . . . 5 | |
13 | 11, 12 | syl5bb 257 | . . . 4 |
14 | 13 | ad2antrl 727 | . . 3 |
15 | 9, 14 | mpbird 232 | . 2 |
16 | opelxpi 5036 | . . . . . . . 8 | |
17 | 16 | 3adant3 1016 | . . . . . . 7 |
18 | simp3 998 | . . . . . . 7 | |
19 | opelxp 5034 | . . . . . . 7 | |
20 | 17, 18, 19 | sylanbrc 664 | . . . . . 6 |
21 | 10, 20 | syl5eqel 2549 | . . . . 5 |
22 | 21 | adantr 465 | . . . 4 |
23 | eleq1 2529 | . . . . 5 | |
24 | 23 | adantl 466 | . . . 4 |
25 | 22, 24 | mpbird 232 | . . 3 |
26 | fveq2 5871 | . . . . . 6 | |
27 | 26 | fveq2d 5875 | . . . . 5 |
28 | ot1stg 6814 | . . . . 5 | |
29 | 27, 28 | sylan9eqr 2520 | . . . 4 |
30 | 26 | fveq2d 5875 | . . . . 5 |
31 | ot2ndg 6815 | . . . . 5 | |
32 | 30, 31 | sylan9eqr 2520 | . . . 4 |
33 | fveq2 5871 | . . . . 5 | |
34 | ot3rdg 6816 | . . . . . 6 | |
35 | 34 | 3ad2ant3 1019 | . . . . 5 |
36 | 33, 35 | sylan9eqr 2520 | . . . 4 |
37 | 29, 32, 36 | 3jca 1176 | . . 3 |
38 | 25, 37 | jca 532 | . 2 |
39 | 15, 38 | impbida 832 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 = wceq 1395
e. wcel 1818 <. cop 4035 <. cotp 4037
X. cxp 5002 ` cfv 5593 c1st 6798
c2nd 6799 |
This theorem is referenced by: el2wlkonot 24869 el2spthonot 24870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-ot 4038 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-iota 5556 df-fun 5595 df-fv 5601 df-1st 6800 df-2nd 6801 |
Copyright terms: Public domain | W3C validator |