![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elab | Unicode version |
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
elab.1 | |
elab.2 |
Ref | Expression |
---|---|
elab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1707 | . 2 | |
2 | elab.1 | . 2 | |
3 | elab.2 | . 2 | |
4 | 1, 2, 3 | elabf 3245 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 e. wcel 1818 { cab 2442
cvv 3109 |
This theorem is referenced by: ralab 3260 rexab 3262 intab 4317 dfiin2g 4363 dfiunv2 4366 opeliunxp 5056 elabrex 6155 abrexco 6156 uniuni 6609 finds 6726 finds2 6728 funcnvuni 6753 fun11iun 6760 mapval2 7468 sbthlem2 7648 ssenen 7711 dffi2 7903 dffi3 7911 tctr 8192 tcmin 8193 tc2 8194 tz9.13 8230 tcrank 8323 kardex 8333 karden 8334 cardf2 8345 cardiun 8384 alephval3 8512 dfac3 8523 dfac5lem3 8527 dfac5lem4 8528 dfac2 8532 kmlem12 8562 cardcf 8653 cfeq0 8657 cfsuc 8658 cff1 8659 cflim2 8664 cfss 8666 axdc3lem2 8852 axdc3lem3 8853 axdclem 8920 brdom7disj 8930 brdom6disj 8931 tskuni 9182 gruina 9217 nqpr 9413 supmul 10536 dfnn2 10574 dfuzi 10978 seqof 12164 hashfacen 12503 hashf1lem1 12504 hashf1lem2 12505 0csh0 12764 shftfval 12903 infcvgaux1i 13668 symg1bas 16421 pmtrprfvalrn 16513 psgnvali 16533 efgrelexlemb 16768 lss1d 17609 lidldvgen 17903 mpfind 18205 pf1ind 18391 zndvds 18588 cmpsublem 19899 cmpsub 19900 ptpjopn 20113 ptclsg 20116 txdis1cn 20136 tx1stc 20151 hauspwpwf1 20488 qustgplem 20619 ustn0 20723 i1fadd 22102 i1fmul 22103 i1fmulc 22110 2wot2wont 24886 2spot2iun2spont 24891 rusgranumwlkb0 24953 usg2spot2nb 25065 nmosetn0 25680 nmoolb 25686 nmlno0lem 25708 nmopsetn0 26784 nmfnsetn0 26797 nmoplb 26826 nmfnlb 26843 nmlnop0iALT 26914 nmopun 26933 nmcexi 26945 branmfn 27024 pjnmopi 27067 fpwrelmapffslem 27555 ldlfcntref 27857 esumc 28062 orvcval2 28397 derangenlem 28615 mclsssvlem 28922 mclsind 28930 dfrtrcl2 29071 dfon2lem3 29217 dfon2lem7 29221 fnimage 29579 imageval 29580 supadd 30042 mblfinlem3 30053 mblfinlem4 30054 ismblfin 30055 itg2addnc 30069 sdclem2 30235 sdclem1 30236 heibor1lem 30305 eldiophss 30708 setindtrs 30967 hbtlem2 31073 hbtlem5 31077 rngunsnply 31122 nzss 31222 upbdrech 31505 fourierdlem36 31925 opeliun2xp 32922 glbconxN 35102 pmapglbx 35493 dvhb1dimN 36712 trclub 37784 trclubg 37785 dfhe3 37799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 |
Copyright terms: Public domain | W3C validator |