![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elab2g | Unicode version |
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elab2g.1 | |
elab2g.2 |
Ref | Expression |
---|---|
elab2g |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab2g.2 | . . 3 | |
2 | 1 | eleq2i 2535 | . 2 |
3 | elab2g.1 | . . 3 | |
4 | 3 | elabg 3247 | . 2 |
5 | 2, 4 | syl5bb 257 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 e. wcel 1818 { cab 2442 |
This theorem is referenced by: elab2 3249 elab4g 3250 eldif 3485 elun 3644 elin 3686 elprg 4045 elsncg 4052 eluni 4252 eliun 4335 eliin 4336 elopab 4760 elong 4891 elrn2g 5198 eldmg 5203 elrnmpt 5254 elrnmpt1 5256 elimag 5346 elrnmpt2g 6414 elrnmpt2res 6416 eloprabi 6862 tfrlem12 7077 elqsg 7382 elixp2 7493 isacn 8446 isfin1a 8693 isfin2 8695 isfin4 8698 isfin7 8702 isfin3ds 8730 elwina 9085 elina 9086 iswun 9103 eltskg 9149 elgrug 9191 elnp 9386 elnpi 9387 iscat 15069 isps 15832 isdir 15862 ismgm 15873 elsymgbas2 16406 mdetunilem9 19122 istopg 19404 isbasisg 19448 isptfin 20017 isufl 20414 isusp 20764 2sqlem9 23648 isplig 25179 isgrpo 25198 isass 25318 isexid 25319 ismgmOLD 25322 elghomlem2OLD 25364 elunop 26791 adjeu 26808 isarchi 27726 ispcmp 27860 eulerpartlemelr 28296 eulerpartlemgs2 28319 ballotlemfmpn 28433 ismfs 28909 dfon2lem3 29217 orderseqlem 29332 elno 29406 elaltxp 29625 heiborlem1 30307 heiborlem10 30316 nzss 31222 isuhgr 32366 isushgr 32367 ismgmALT 32547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 |
Copyright terms: Public domain | W3C validator |