Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elab3gf Unicode version

Theorem elab3gf 3251
 Description: Membership in a class abstraction, with a weaker antecedent than elabgf 3244. (Contributed by NM, 6-Sep-2011.)
Hypotheses
Ref Expression
elab3gf.1
elab3gf.2
elab3gf.3
Assertion
Ref Expression
elab3gf

Proof of Theorem elab3gf
StepHypRef Expression
1 elab3gf.1 . . . . 5
2 elab3gf.2 . . . . 5
3 elab3gf.3 . . . . 5
41, 2, 3elabgf 3244 . . . 4
54ibi 241 . . 3
6 pm2.21 108 . . 3
75, 6impbid2 204 . 2
81, 2, 3elabgf 3244 . 2
97, 8ja 161 1
 Colors of variables: wff setvar class Syntax hints:  -.wn 3  ->wi 4  <->wb 184  =wceq 1395  F/wnf 1616  e.wcel 1818  {cab 2442  F/_wnfc 2605 This theorem is referenced by:  elab3g  3252 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111
 Copyright terms: Public domain W3C validator