![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elab3gf | Unicode version |
Description: Membership in a class abstraction, with a weaker antecedent than elabgf 3244. (Contributed by NM, 6-Sep-2011.) |
Ref | Expression |
---|---|
elab3gf.1 | |
elab3gf.2 | |
elab3gf.3 |
Ref | Expression |
---|---|
elab3gf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab3gf.1 | . . . . 5 | |
2 | elab3gf.2 | . . . . 5 | |
3 | elab3gf.3 | . . . . 5 | |
4 | 1, 2, 3 | elabgf 3244 | . . . 4 |
5 | 4 | ibi 241 | . . 3 |
6 | pm2.21 108 | . . 3 | |
7 | 5, 6 | impbid2 204 | . 2 |
8 | 1, 2, 3 | elabgf 3244 | . 2 |
9 | 7, 8 | ja 161 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 = wceq 1395 F/ wnf 1616
e. wcel 1818 { cab 2442 F/_ wnfc 2605 |
This theorem is referenced by: elab3g 3252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 |
Copyright terms: Public domain | W3C validator |