Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elab4g Unicode version

Theorem elab4g 3250
 Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 17-Oct-2012.)
Hypotheses
Ref Expression
elab4g.1
elab4g.2
Assertion
Ref Expression
elab4g
Distinct variable groups:   ,   ,

Proof of Theorem elab4g
StepHypRef Expression
1 elex 3118 . 2
2 elab4g.1 . . 3
3 elab4g.2 . . 3
42, 3elab2g 3248 . 2
 Colors of variables: wff setvar class Syntax hints:  ->wi 4  <->wb 184  /\wa 369  =wceq 1395  e.wcel 1818  {cab 2442   cvv 3109 This theorem is referenced by:  isprs  15559  ispos  15576  istrkgc  23851  istrkgb  23852  istrkgcb  23853  istrkge  23854  istrkgl  23855  istrkg2d  23856  eulerpartlemt0  28308 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-v 3111