![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elabg | Unicode version |
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) |
Ref | Expression |
---|---|
elabg.1 |
Ref | Expression |
---|---|
elabg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2619 | . 2 | |
2 | nfv 1707 | . 2 | |
3 | elabg.1 | . 2 | |
4 | 1, 2, 3 | elabgf 3244 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
= wceq 1395 e. wcel 1818 { cab 2442 |
This theorem is referenced by: elab2g 3248 intmin3 4315 elxpi 5020 finds 6726 elfi 7893 inficl 7905 dffi3 7911 scott0 8325 elgch 9021 nqpr 9413 hashf1lem1 12504 cshword 12762 lubval 15614 glbval 15627 efgcpbllemb 16773 frgpuplem 16790 lspsn 17648 mpfind 18205 pf1ind 18391 eltg 19458 eltg2 19459 islocfin 20018 fbssfi 20338 elabreximd 27408 abfmpunirn 27490 orvcval 28396 wfrlem15 29357 setindtrs 30967 rngunsnply 31122 nzss 31222 elabrexg 31430 afvelrnb 32248 afvelrnb0 32249 dfiso2 32568 islshpkrN 34845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 |
Copyright terms: Public domain | W3C validator |