![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elabgt | Unicode version |
Description: Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 3247.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
elabgt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abid 2444 | . . . . . . 7 | |
2 | eleq1 2529 | . . . . . . 7 | |
3 | 1, 2 | syl5bbr 259 | . . . . . 6 |
4 | 3 | bibi1d 319 | . . . . 5 |
5 | 4 | biimpd 207 | . . . 4 |
6 | 5 | a2i 13 | . . 3 |
7 | 6 | alimi 1633 | . 2 |
8 | nfcv 2619 | . . . 4 | |
9 | nfab1 2621 | . . . . . 6 | |
10 | 9 | nfel2 2637 | . . . . 5 |
11 | nfv 1707 | . . . . 5 | |
12 | 10, 11 | nfbi 1934 | . . . 4 |
13 | pm5.5 336 | . . . 4 | |
14 | 8, 12, 13 | spcgf 3189 | . . 3 |
15 | 14 | imp 429 | . 2 |
16 | 7, 15 | sylan2 474 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
e. wcel 1818 { cab 2442 |
This theorem is referenced by: elrab3t 3256 abfmpeld 27492 abfmpel 27493 dfrtrcl2 29071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 |
Copyright terms: Public domain | W3C validator |