![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > eldifbd | Unicode version |
Description: If a class is in the difference of two classes, it is not in the subtrahend. One-way deduction form of eldif 3485. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
eldifbd.1 |
Ref | Expression |
---|---|
eldifbd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifbd.1 | . . 3 | |
2 | eldif 3485 | . . 3 | |
3 | 1, 2 | sylib 196 | . 2 |
4 | 3 | simprd 463 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
/\ wa 369 e. wcel 1818 \ cdif 3472 |
This theorem is referenced by: xpdifid 5440 boxcutc 7532 infeq5i 8074 cantnflem2 8130 ackbij1lem18 8638 infpssrlem4 8707 fin23lem30 8743 domtriomlem 8843 pwfseqlem4 9061 dprdfadd 17060 dprdfaddOLD 17067 pgpfac1lem2 17126 pgpfac1lem3a 17127 pgpfac1lem3 17128 lspsolv 17789 lsppratlem3 17795 mplsubrglem 18100 mplsubrglemOLD 18101 frlmssuvc2 18826 frlmssuvc2OLD 18828 hauscmplem 19906 1stccnp 19963 1stckgen 20055 alexsublem 20544 bcthlem4 21766 plyeq0lem 22607 ftalem3 23348 tglngne 23937 ofpreima2 27508 qqhval2 27963 sibfof 28282 eulerpartlemsv2 28297 eulerpartlemv 28303 eulerpartlemgs2 28319 rmspecnonsq 30843 dstregt0 31463 fprodexp 31600 fprodabs2 31602 lptre2pt 31646 dvnprodlem2 31744 stoweidlem43 31825 fourierdlem66 31955 dochnel2 37119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-dif 3478 |
Copyright terms: Public domain | W3C validator |