MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elex2 Unicode version

Theorem elex2 3121
Description: If a class contains another class, then it contains some set. (Contributed by Alan Sare, 25-Sep-2011.)
Assertion
Ref Expression
elex2
Distinct variable groups:   ,   ,

Proof of Theorem elex2
StepHypRef Expression
1 eleq1a 2540 . . 3
21alrimiv 1719 . 2
3 elisset 3120 . 2
4 exim 1654 . 2
52, 3, 4sylc 60 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  A.wal 1393  =wceq 1395  E.wex 1612  e.wcel 1818
This theorem is referenced by:  negn0  11197  nocvxmin  29451  itg2addnclem2  30067  risci  30390  dvh1dimat  37168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-12 1854  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1398  df-ex 1613  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-v 3111
  Copyright terms: Public domain W3C validator