![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elfi2 | Unicode version |
Description: The empty intersection need not be considered in the set of finite intersections. (Contributed by Mario Carneiro, 21-Mar-2015.) |
Ref | Expression |
---|---|
elfi2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3118 | . . 3 | |
2 | 1 | a1i 11 | . 2 |
3 | simpr 461 | . . . . 5 | |
4 | eldifsni 4156 | . . . . . . 7 | |
5 | 4 | adantr 465 | . . . . . 6 |
6 | intex 4608 | . . . . . 6 | |
7 | 5, 6 | sylib 196 | . . . . 5 |
8 | 3, 7 | eqeltrd 2545 | . . . 4 |
9 | 8 | rexlimiva 2945 | . . 3 |
10 | 9 | a1i 11 | . 2 |
11 | elfi 7893 | . . . 4 | |
12 | vprc 4590 | . . . . . . . . . . 11 | |
13 | elsni 4054 | . . . . . . . . . . . . . 14 | |
14 | 13 | inteqd 4291 | . . . . . . . . . . . . 13 |
15 | int0 4300 | . . . . . . . . . . . . 13 | |
16 | 14, 15 | syl6eq 2514 | . . . . . . . . . . . 12 |
17 | 16 | eleq1d 2526 | . . . . . . . . . . 11 |
18 | 12, 17 | mtbiri 303 | . . . . . . . . . 10 |
19 | simpr 461 | . . . . . . . . . . 11 | |
20 | simpll 753 | . . . . . . . . . . 11 | |
21 | 19, 20 | eqeltrrd 2546 | . . . . . . . . . 10 |
22 | 18, 21 | nsyl3 119 | . . . . . . . . 9 |
23 | 22 | biantrud 507 | . . . . . . . 8 |
24 | eldif 3485 | . . . . . . . 8 | |
25 | 23, 24 | syl6bbr 263 | . . . . . . 7 |
26 | 25 | pm5.32da 641 | . . . . . 6 |
27 | ancom 450 | . . . . . 6 | |
28 | ancom 450 | . . . . . 6 | |
29 | 26, 27, 28 | 3bitr4g 288 | . . . . 5 |
30 | 29 | rexbidv2 2964 | . . . 4 |
31 | 11, 30 | bitrd 253 | . . 3 |
32 | 31 | expcom 435 | . 2 |
33 | 2, 10, 32 | pm5.21ndd 354 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 /\ wa 369 = wceq 1395
e. wcel 1818 =/= wne 2652 E. wrex 2808
cvv 3109
\ cdif 3472 i^i cin 3474 c0 3784 ~P cpw 4012 { csn 4029
|^| cint 4286
` cfv 5593 cfn 7536 cfi 7890 |
This theorem is referenced by: fifo 7912 firest 14830 alexsublem 20544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-int 4287 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fv 5601 df-fi 7891 |
Copyright terms: Public domain | W3C validator |