![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elfpw | Unicode version |
Description: Membership in a class of finite subsets. (Contributed by Stefan O'Rear, 4-Apr-2015.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
elfpw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3686 | . 2 | |
2 | elpwg 4020 | . . 3 | |
3 | 2 | pm5.32ri 638 | . 2 |
4 | 1, 3 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
e. wcel 1818 i^i cin 3474 C_ wss 3475
~P cpw 4012 cfn 7536 |
This theorem is referenced by: bitsinv2 14093 bitsf1ocnv 14094 2ebits 14097 bitsinvp1 14099 sadcaddlem 14107 sadadd2lem 14109 sadadd3 14111 sadaddlem 14116 sadasslem 14120 sadeq 14122 firest 14830 acsfiindd 15807 restfpw 19680 cmpcov2 19890 cmpcovf 19891 cncmp 19892 tgcmp 19901 cmpcld 19902 cmpfi 19908 locfincmp 20027 comppfsc 20033 alexsublem 20544 alexsubALTlem2 20548 alexsubALTlem4 20550 alexsubALT 20551 ptcmplem2 20553 ptcmplem3 20554 ptcmplem5 20556 tsmsfbas 20626 tsmslem1 20627 tsmsgsum 20637 tsmsgsumOLD 20640 tsmssubm 20644 tsmsresOLD 20645 tsmsres 20646 tsmsf1o 20647 tsmsmhm 20648 tsmsadd 20649 tsmsxplem1 20655 tsmsxplem2 20656 tsmsxp 20657 xrge0gsumle 21338 xrge0tsms 21339 xrge0tsmsd 27775 indf1ofs 28039 mvrsfpw 28866 elmpst 28896 istotbnd3 30267 sstotbnd2 30270 sstotbnd 30271 sstotbnd3 30272 equivtotbnd 30274 totbndbnd 30285 prdstotbnd 30290 isnacs3 30642 pwfi2f1o 31044 hbtlem6 31078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-v 3111 df-in 3482 df-ss 3489 df-pw 4014 |
Copyright terms: Public domain | W3C validator |