![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elfvmptrab1 | Unicode version |
Description: Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
Ref | Expression |
---|---|
elfvmptrab1.f | |
elfvmptrab1.v |
Ref | Expression |
---|---|
elfvmptrab1 |
M
, , ,, , ,Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 3790 | . . 3 | |
2 | ndmfv 5895 | . . . 4 | |
3 | 2 | necon1ai 2688 | . . 3 |
4 | elfvmptrab1.f | . . . . . . . 8 | |
5 | 4 | dmmptss 5508 | . . . . . . 7 |
6 | 5 | sseli 3499 | . . . . . 6 |
7 | elfvmptrab1.v | . . . . . . 7 | |
8 | rabexg 4602 | . . . . . . 7 | |
9 | 6, 7, 8 | 3syl 20 | . . . . . 6 |
10 | nfcv 2619 | . . . . . . 7 | |
11 | nfsbc1v 3347 | . . . . . . . 8 | |
12 | nfcv 2619 | . . . . . . . . 9 | |
13 | 10, 12 | nfcsb 3452 | . . . . . . . 8 |
14 | 11, 13 | nfrab 3039 | . . . . . . 7 |
15 | csbeq1 3437 | . . . . . . . 8 | |
16 | sbceq1a 3338 | . . . . . . . 8 | |
17 | 15, 16 | rabeqbidv 3104 | . . . . . . 7 |
18 | 10, 14, 17, 4 | fvmptf 5972 | . . . . . 6 |
19 | 6, 9, 18 | syl2anc 661 | . . . . 5 |
20 | 19 | eleq2d 2527 | . . . 4 |
21 | elrabi 3254 | . . . . . 6 | |
22 | 6, 21 | anim12i 566 | . . . . 5 |
23 | 22 | ex 434 | . . . 4 |
24 | 20, 23 | sylbid 215 | . . 3 |
25 | 1, 3, 24 | 3syl 20 | . 2 |
26 | 25 | pm2.43i 47 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
= wceq 1395 e. wcel 1818 =/= wne 2652
{ crab 2811 cvv 3109
[. wsbc 3327 [_ csb 3434 c0 3784 e. cmpt 4510 dom cdm 5004
` cfv 5593 |
This theorem is referenced by: elfvmptrab 5977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fv 5601 |
Copyright terms: Public domain | W3C validator |