![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elfz0fzfz0 | Unicode version |
Description: A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.) |
Ref | Expression |
---|---|
elfz0fzfz0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfz2nn0 11798 | . . . 4 | |
2 | elfz2 11708 | . . . . . 6 | |
3 | nn0re 10829 | . . . . . . . . . . . . . . . . . 18 | |
4 | nn0re 10829 | . . . . . . . . . . . . . . . . . 18 | |
5 | zre 10893 | . . . . . . . . . . . . . . . . . 18 | |
6 | 3, 4, 5 | 3anim123i 1181 | . . . . . . . . . . . . . . . . 17 |
7 | 6 | 3expa 1196 | . . . . . . . . . . . . . . . 16 |
8 | letr 9699 | . . . . . . . . . . . . . . . 16 | |
9 | 7, 8 | syl 16 | . . . . . . . . . . . . . . 15 |
10 | simplll 759 | . . . . . . . . . . . . . . . . 17 | |
11 | simpr 461 | . . . . . . . . . . . . . . . . . . 19 | |
12 | 11 | adantr 465 | . . . . . . . . . . . . . . . . . 18 |
13 | elnn0z 10902 | . . . . . . . . . . . . . . . . . . . . . 22 | |
14 | 0red 9618 | . . . . . . . . . . . . . . . . . . . . . . . . . 26 | |
15 | zre 10893 | . . . . . . . . . . . . . . . . . . . . . . . . . . 27 | |
16 | 15 | adantr 465 | . . . . . . . . . . . . . . . . . . . . . . . . . 26 |
17 | 5 | adantl 466 | . . . . . . . . . . . . . . . . . . . . . . . . . 26 |
18 | letr 9699 | . . . . . . . . . . . . . . . . . . . . . . . . . 26 | |
19 | 14, 16, 17, 18 | syl3anc 1228 | . . . . . . . . . . . . . . . . . . . . . . . . 25 |
20 | 19 | exp4b 607 | . . . . . . . . . . . . . . . . . . . . . . . 24 |
21 | 20 | com23 78 | . . . . . . . . . . . . . . . . . . . . . . 23 |
22 | 21 | imp 429 | . . . . . . . . . . . . . . . . . . . . . 22 |
23 | 13, 22 | sylbi 195 | . . . . . . . . . . . . . . . . . . . . 21 |
24 | 23 | adantr 465 | . . . . . . . . . . . . . . . . . . . 20 |
25 | 24 | imp 429 | . . . . . . . . . . . . . . . . . . 19 |
26 | 25 | imp 429 | . . . . . . . . . . . . . . . . . 18 |
27 | elnn0z 10902 | . . . . . . . . . . . . . . . . . 18 | |
28 | 12, 26, 27 | sylanbrc 664 | . . . . . . . . . . . . . . . . 17 |
29 | simpr 461 | . . . . . . . . . . . . . . . . 17 | |
30 | 10, 28, 29 | 3jca 1176 | . . . . . . . . . . . . . . . 16 |
31 | 30 | ex 434 | . . . . . . . . . . . . . . 15 |
32 | 9, 31 | syld 44 | . . . . . . . . . . . . . 14 |
33 | 32 | exp4b 607 | . . . . . . . . . . . . 13 |
34 | 33 | com23 78 | . . . . . . . . . . . 12 |
35 | 34 | 3impia 1193 | . . . . . . . . . . 11 |
36 | 35 | com13 80 | . . . . . . . . . 10 |
37 | 36 | adantr 465 | . . . . . . . . 9 |
38 | 37 | com12 31 | . . . . . . . 8 |
39 | 38 | 3ad2ant3 1019 | . . . . . . 7 |
40 | 39 | imp 429 | . . . . . 6 |
41 | 2, 40 | sylbi 195 | . . . . 5 |
42 | 41 | com12 31 | . . . 4 |
43 | 1, 42 | sylbi 195 | . . 3 |
44 | 43 | imp 429 | . 2 |
45 | elfz2nn0 11798 | . 2 | |
46 | 44, 45 | sylibr 212 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 /\ wa 369
/\ w3a 973 e. wcel 1818 class class class wbr 4452
(class class class)co 6296 cr 9512 0 cc0 9513 cle 9650 cn0 10820
cz 10889 cfz 11701 |
This theorem is referenced by: swrdccatin12lem2c 12713 swrdccatin12 12716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 |
Copyright terms: Public domain | W3C validator |