![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elfz2 | Unicode version |
Description: Membership in a finite set of sequential integers. We use the fact that an operation's value is empty outside of its domain to show and . (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfz2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 649 | . 2 | |
2 | df-3an 975 | . . 3 | |
3 | 2 | anbi1i 695 | . 2 |
4 | elfz1 11706 | . . . 4 | |
5 | 3anass 977 | . . . . 5 | |
6 | ibar 504 | . . . . 5 | |
7 | 5, 6 | syl5bb 257 | . . . 4 |
8 | 4, 7 | bitrd 253 | . . 3 |
9 | fzf 11705 | . . . . . . 7 | |
10 | 9 | fdmi 5741 | . . . . . 6 |
11 | 10 | ndmov 6459 | . . . . 5 |
12 | 11 | eleq2d 2527 | . . . 4 |
13 | noel 3788 | . . . . . 6 | |
14 | 13 | pm2.21i 131 | . . . . 5 |
15 | simpl 457 | . . . . 5 | |
16 | 14, 15 | pm5.21ni 352 | . . . 4 |
17 | 12, 16 | bitrd 253 | . . 3 |
18 | 8, 17 | pm2.61i 164 | . 2 |
19 | 1, 3, 18 | 3bitr4ri 278 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 <-> wb 184
/\ wa 369 /\ w3a 973 e. wcel 1818
c0 3784 ~P cpw 4012 class class class wbr 4452
X. cxp 5002 (class class class)co 6296
cle 9650 cz 10889 cfz 11701 |
This theorem is referenced by: elfz4 11710 elfzuzb 11711 uzsubsubfz 11736 fzmmmeqm 11746 fzpreddisj 11758 elfz1b 11777 fzp1nel 11791 elfz0ubfz0 11807 elfz0fzfz0 11808 fz0fzelfz0 11809 fz0fzdiffz0 11812 elfzmlbmOLD 11814 elfzmlbp 11815 fzind2 11924 swrdswrdlem 12684 swrdswrd 12685 swrdccatin12lem2a 12710 swrdccatin12lem2b 12711 swrdccatin2 12712 swrdccatin12lem2 12714 swrdccat3 12717 2cshwcshw 12793 cshwcsh2id 12796 fprodntriv 13749 fprodeq0 13779 chfacfscmulgsum 19361 chfacfpmmulgsum 19365 wwlkextproplem1 24741 wwlkextproplem2 24742 clwlkfclwwlk 24844 preduz 29280 monoords 31496 fmul01lt1lem1 31578 fmul01lt1lem2 31579 mccllem 31605 sumnnodd 31636 dvnmul 31740 dvnprodlem1 31743 dvnprodlem2 31744 itgspltprt 31778 stoweidlem3 31785 stoweidlem34 31816 stoweidlem51 31833 fourierdlem12 31901 fourierdlem14 31903 fourierdlem41 31930 fourierdlem48 31937 fourierdlem49 31938 fourierdlem50 31939 fourierdlem79 31968 fourierdlem92 31981 fourierdlem93 31982 elaa2lem 32016 etransclem3 32020 etransclem7 32024 etransclem10 32027 etransclem24 32041 etransclem27 32044 etransclem28 32045 etransclem35 32052 etransclem38 32055 etransclem44 32061 elfzelfzlble 32337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-neg 9831 df-z 10890 df-fz 11702 |
Copyright terms: Public domain | W3C validator |