![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elfzel2 | Unicode version |
Description: Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzel2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzuz3 11714 | . 2 | |
2 | eluzelz 11119 | . 2 | |
3 | 1, 2 | syl 16 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 e. wcel 1818
` cfv 5593 (class class class)co 6296
cz 10889 cuz 11110
cfz 11701 |
This theorem is referenced by: elfz1eq 11726 fzdisj 11741 fzssp1 11755 fzp1disj 11767 fzrev2i 11773 fzrev3 11774 fznuz 11789 fznn0sub2 11810 elfzmlbm 11813 difelfznle 11818 nn0disj 11820 fzofzp1b 11910 bcm1k 12393 bcp1nk 12395 swrdccatin12lem2 12714 spllen 12730 fsum0diag2 13598 psgnunilem2 16520 pntpbnd1 23771 fallfacval3 29134 fallfacval4 29165 elfzfzo 31458 sumnnodd 31636 dvnmul 31740 dvnprodlem1 31743 dvnprodlem2 31744 stoweidlem34 31816 fourierdlem11 31900 fourierdlem12 31901 fourierdlem15 31904 fourierdlem41 31930 fourierdlem48 31937 fourierdlem49 31938 fourierdlem54 31943 fourierdlem79 31968 fourierdlem102 31991 fourierdlem114 32003 etransclem23 32040 etransclem35 32052 2elfz2melfz 32334 elfzelfzlble 32337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-neg 9831 df-z 10890 df-uz 11111 df-fz 11702 |
Copyright terms: Public domain | W3C validator |