![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elfzo0z | Unicode version |
Description: Membership in a half-open range of nonnegative integers, generalization of elfzo0 11863 requiring the upper bound to be an integer only. (Contributed by Alexander van der Vekens, 23-Sep-2018.) |
Ref | Expression |
---|---|
elfzo0z |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzo0 11863 | . 2 | |
2 | nnz 10911 | . . . 4 | |
3 | 2 | 3anim2i 1183 | . . 3 |
4 | simp1 996 | . . . 4 | |
5 | elnn0z 10902 | . . . . . 6 | |
6 | 0red 9618 | . . . . . . . . . 10 | |
7 | zre 10893 | . . . . . . . . . . 11 | |
8 | 7 | adantr 465 | . . . . . . . . . 10 |
9 | zre 10893 | . . . . . . . . . . 11 | |
10 | 9 | adantl 466 | . . . . . . . . . 10 |
11 | lelttr 9696 | . . . . . . . . . 10 | |
12 | 6, 8, 10, 11 | syl3anc 1228 | . . . . . . . . 9 |
13 | elnnz 10899 | . . . . . . . . . . 11 | |
14 | 13 | simplbi2 625 | . . . . . . . . . 10 |
15 | 14 | adantl 466 | . . . . . . . . 9 |
16 | 12, 15 | syld 44 | . . . . . . . 8 |
17 | 16 | expd 436 | . . . . . . 7 |
18 | 17 | impancom 440 | . . . . . 6 |
19 | 5, 18 | sylbi 195 | . . . . 5 |
20 | 19 | 3imp 1190 | . . . 4 |
21 | simp3 998 | . . . 4 | |
22 | 4, 20, 21 | 3jca 1176 | . . 3 |
23 | 3, 22 | impbii 188 | . 2 |
24 | 1, 23 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 e. wcel 1818
class class class wbr 4452 (class class class)co 6296
cr 9512 0 cc0 9513 clt 9649 cle 9650 cn 10561 cn0 10820
cz 10889 cfzo 11824 |
This theorem is referenced by: swrdspsleq 12673 ccat2s1fvwALT 12893 clwwlkel 24793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-1cn 9571 ax-icn 9572 ax-addcl 9573 ax-addrcl 9574 ax-mulcl 9575 ax-mulrcl 9576 ax-mulcom 9577 ax-addass 9578 ax-mulass 9579 ax-distr 9580 ax-i2m1 9581 ax-1ne0 9582 ax-1rid 9583 ax-rnegex 9584 ax-rrecex 9585 ax-cnre 9586 ax-pre-lttri 9587 ax-pre-lttrn 9588 ax-pre-ltadd 9589 ax-pre-mulgt0 9590 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-reu 2814 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-pss 3491 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-tp 4034 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-tr 4546 df-eprel 4796 df-id 4800 df-po 4805 df-so 4806 df-fr 4843 df-we 4845 df-ord 4886 df-on 4887 df-lim 4888 df-suc 4889 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-riota 6257 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-om 6701 df-1st 6800 df-2nd 6801 df-recs 7061 df-rdg 7095 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-sub 9830 df-neg 9831 df-nn 10562 df-n0 10821 df-z 10890 df-uz 11111 df-fz 11702 df-fzo 11825 |
Copyright terms: Public domain | W3C validator |