![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elfzuzb | Unicode version |
Description: Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
elfzuzb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 975 | . . 3 | |
2 | an6 1308 | . . 3 | |
3 | df-3an 975 | . . . . 5 | |
4 | anandir 829 | . . . . 5 | |
5 | ancom 450 | . . . . . 6 | |
6 | 5 | anbi2i 694 | . . . . 5 |
7 | 3, 4, 6 | 3bitri 271 | . . . 4 |
8 | 7 | anbi1i 695 | . . 3 |
9 | 1, 2, 8 | 3bitr4ri 278 | . 2 |
10 | elfz2 11708 | . 2 | |
11 | eluz2 11116 | . . 3 | |
12 | eluz2 11116 | . . 3 | |
13 | 11, 12 | anbi12i 697 | . 2 |
14 | 9, 10, 13 | 3bitr4i 277 | 1 |
Colors of variables: wff setvar class |
Syntax hints: <-> wb 184 /\ wa 369
/\ w3a 973 e. wcel 1818 class class class wbr 4452
` cfv 5593 (class class class)co 6296
cle 9650 cz 10889 cuz 11110
cfz 11701 |
This theorem is referenced by: eluzfz 11712 elfzuz 11713 elfzuz3 11714 elfzuz2 11720 peano2fzr 11728 fzsplit2 11739 fzass4 11750 fzss1 11751 fzss2 11752 fzp1elp1 11762 fznn 11776 elfz2nn0 11798 elfzofz 11843 fzosplitsnm1 11890 fzofzp1b 11910 fzosplitsn 11918 seqcl2 12125 seqfveq2 12129 monoord 12137 seqid2 12153 bcn1 12391 fz1isolem 12510 seqcoll 12512 ccatrn 12606 swrds1 12676 swrdccat1 12682 swrdccat2 12683 spllen 12730 splfv2a 12732 splval2 12733 caubnd 13191 isercolllem2 13488 isercolllem3 13489 summolem2a 13537 fsum0diag2 13598 climcndslem1 13661 mertenslem1 13693 prodmolem2a 13741 vdwlem2 14500 vdwlem8 14506 gexcl3 16607 efginvrel2 16745 efgredleme 16761 efgcpbllemb 16773 1stckgenlem 20054 imasdsf1olem 20876 iscmet3lem1 21730 dvtaylp 22765 mtest 22799 ppisval 23377 ppisval2 23378 chtdif 23432 ppidif 23437 logfaclbnd 23497 bposlem4 23562 dchrisumlem2 23675 pntpbnd1 23771 eupath2lem3 24979 fzsplit3 27599 mettrifi 30250 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-iun 4332 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-1st 6800 df-2nd 6801 df-neg 9831 df-z 10890 df-uz 11111 df-fz 11702 |
Copyright terms: Public domain | W3C validator |