MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elgrug Unicode version

Theorem elgrug 9191
Description: Properties of a Grothendieck universe. (Contributed by Mario Carneiro, 9-Jun-2013.)
Assertion
Ref Expression
elgrug
Distinct variable group:   , ,

Proof of Theorem elgrug
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 treq 4551 . . 3
2 eleq2 2530 . . . . 5
3 eleq2 2530 . . . . . 6
43raleqbi1dv 3062 . . . . 5
5 oveq1 6303 . . . . . 6
6 eleq2 2530 . . . . . 6
75, 6raleqbidv 3068 . . . . 5
82, 4, 73anbi123d 1299 . . . 4
98raleqbi1dv 3062 . . 3
101, 9anbi12d 710 . 2
11 df-gru 9190 . 2
1210, 11elab2g 3248 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  /\w3a 973  =wceq 1395  e.wcel 1818  A.wral 2807  ~Pcpw 4012  {cpr 4031  U.cuni 4249  Trwtr 4545  rancrn 5005  (class class class)co 6296   cmap 7439   cgru 9189
This theorem is referenced by:  grutr  9192  grupw  9194  grupr  9196  gruurn  9197  intgru  9213  ingru  9214  grutsk1  9220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-tr 4546  df-iota 5556  df-fv 5601  df-ov 6299  df-gru 9190
  Copyright terms: Public domain W3C validator