![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elico1 | Unicode version |
Description: Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
elico1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ico 11564 | . 2 | |
2 | 1 | elixx1 11567 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 e. wcel 1818
class class class wbr 4452 (class class class)co 6296
cxr 9648
clt 9649 cle 9650 cico 11560 |
This theorem is referenced by: lbico1 11608 elico2 11617 icodisj 11674 leordtvallem2 19712 pnfnei 19721 mnfnei 19722 metustexhalfOLD 21066 metustexhalf 21067 blval2 21078 metuel2 21082 iscfil2 21705 eliccelico 27588 elicoelioo 27589 xrdifh 27591 fsumrp0cl 27685 xrge0iifcnv 27915 esumpcvgval 28084 tan2h 30047 iocinico 31179 rfcnpre3 31408 icogelb 31542 icoltub 31545 elicod 31551 icoiccdif 31564 bj-flbi3 34608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-iota 5556 df-fun 5595 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-xr 9653 df-ico 11564 |
Copyright terms: Public domain | W3C validator |