![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elimdhyp | Unicode version |
Description: Version of elimhyp 4000 where the hypothesis is deduced from the final antecedent. See ghomgrplem 29029 for an example of its use. (Contributed by Paul Chapman, 25-Mar-2008.) |
Ref | Expression |
---|---|
elimdhyp.1 | |
elimdhyp.2 | |
elimdhyp.3 | |
elimdhyp.4 |
Ref | Expression |
---|---|
elimdhyp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimdhyp.1 | . . 3 | |
2 | iftrue 3947 | . . . . 5 | |
3 | 2 | eqcomd 2465 | . . . 4 |
4 | elimdhyp.2 | . . . 4 | |
5 | 3, 4 | syl 16 | . . 3 |
6 | 1, 5 | mpbid 210 | . 2 |
7 | elimdhyp.4 | . . 3 | |
8 | iffalse 3950 | . . . . 5 | |
9 | 8 | eqcomd 2465 | . . . 4 |
10 | elimdhyp.3 | . . . 4 | |
11 | 9, 10 | syl 16 | . . 3 |
12 | 7, 11 | mpbii 211 | . 2 |
13 | 6, 12 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 = wceq 1395 if cif 3941 |
This theorem is referenced by: divalg 14061 ghomgrplem 29029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-if 3942 |
Copyright terms: Public domain | W3C validator |