MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimf Unicode version

Theorem elimf 5735
Description: Eliminate a mapping hypothesis for the weak deduction theorem dedth 3993, when a special case is provable, in order to convert from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006.)
Hypothesis
Ref Expression
elimf.1
Assertion
Ref Expression
elimf

Proof of Theorem elimf
StepHypRef Expression
1 feq1 5718 . 2
2 feq1 5718 . 2
3 elimf.1 . 2
41, 2, 3elimhyp 4000 1
Colors of variables: wff setvar class
Syntax hints:  ifcif 3941  -->wf 5589
This theorem is referenced by:  hosubcl  26692  hoaddcom  26693  hoaddass  26701  hocsubdir  26704  hoaddid1  26710  hodid  26711  ho0sub  26716  honegsub  26718  hoddi  26909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-fun 5595  df-fn 5596  df-f 5597
  Copyright terms: Public domain W3C validator