Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimhyp Unicode version

Theorem elimhyp 4000
 Description: Eliminate a hypothesis containing class variable when it is known for a specific class . For more information, see comments in dedth 3993. (Contributed by NM, 15-May-1999.)
Hypotheses
Ref Expression
elimhyp.1
elimhyp.2
elimhyp.3
Assertion
Ref Expression
elimhyp

Proof of Theorem elimhyp
StepHypRef Expression
1 iftrue 3947 . . . . 5
21eqcomd 2465 . . . 4
3 elimhyp.1 . . . 4
42, 3syl 16 . . 3
54ibi 241 . 2
6 elimhyp.3 . . 3
7 iffalse 3950 . . . . 5
87eqcomd 2465 . . . 4
9 elimhyp.2 . . . 4
108, 9syl 16 . . 3
116, 10mpbii 211 . 2
125, 11pm2.61i 164 1
 Colors of variables: wff setvar class Syntax hints:  -.wn 3  ->wi 4  <->wb 184  =wceq 1395  ifcif 3941 This theorem is referenced by:  elimel  4004  elimf  5735  oeoa  7265  oeoe  7267  limensuc  7714  axcc4dom  8842  elimne0  9607  elimgt0  10403  elimge0  10404  2ndcdisj  19957  siilem2  25767  normlem7tALT  26036  hhsssh  26185  shintcl  26248  chintcl  26250  spanun  26463  elunop2  26932  lnophm  26938  nmbdfnlb  26969  hmopidmch  27072  hmopidmpj  27073  chirred  27314  limsucncmp  29911  elimhyps  34692  elimhyps2  34695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-if 3942
 Copyright terms: Public domain W3C validator