![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elimhyp | Unicode version |
Description: Eliminate a hypothesis containing class variable when it is known for a specific class . For more information, see comments in dedth 3993. (Contributed by NM, 15-May-1999.) |
Ref | Expression |
---|---|
elimhyp.1 | |
elimhyp.2 | |
elimhyp.3 |
Ref | Expression |
---|---|
elimhyp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3947 | . . . . 5 | |
2 | 1 | eqcomd 2465 | . . . 4 |
3 | elimhyp.1 | . . . 4 | |
4 | 2, 3 | syl 16 | . . 3 |
5 | 4 | ibi 241 | . 2 |
6 | elimhyp.3 | . . 3 | |
7 | iffalse 3950 | . . . . 5 | |
8 | 7 | eqcomd 2465 | . . . 4 |
9 | elimhyp.2 | . . . 4 | |
10 | 8, 9 | syl 16 | . . 3 |
11 | 6, 10 | mpbii 211 | . 2 |
12 | 5, 11 | pm2.61i 164 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 = wceq 1395 if cif 3941 |
This theorem is referenced by: elimel 4004 elimf 5735 oeoa 7265 oeoe 7267 limensuc 7714 axcc4dom 8842 elimne0 9607 elimgt0 10403 elimge0 10404 2ndcdisj 19957 siilem2 25767 normlem7tALT 26036 hhsssh 26185 shintcl 26248 chintcl 26250 spanun 26463 elunop2 26932 lnophm 26938 nmbdfnlb 26969 hmopidmch 27072 hmopidmpj 27073 chirred 27314 limsucncmp 29911 elimhyps 34692 elimhyps2 34695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-if 3942 |
Copyright terms: Public domain | W3C validator |