![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elinti | Unicode version |
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
elinti |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elintg 4294 | . . 3 | |
2 | eleq2 2530 | . . . 4 | |
3 | 2 | rspccv 3207 | . . 3 |
4 | 1, 3 | syl6bi 228 | . 2 |
5 | 4 | pm2.43i 47 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 e. wcel 1818
A. wral 2807 |^| cint 4286 |
This theorem is referenced by: inttsk 9173 subgint 16225 subrgint 17451 lssintcl 17610 ufinffr 20430 shintcli 26247 insiga 28137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-v 3111 df-int 4287 |
Copyright terms: Public domain | W3C validator |