MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elioc1 Unicode version

Theorem elioc1 11600
Description: Membership in an open-below, closed-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
elioc1

Proof of Theorem elioc1
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ioc 11563 . 2
21elixx1 11567 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  /\w3a 973  e.wcel 1818   class class class wbr 4452  (class class class)co 6296   cxr 9648   clt 9649   cle 9650   cioc 11559
This theorem is referenced by:  ubioc1  11607  elioc2  11616  leordtvallem1  19711  pnfnei  19721  mnfnei  19722  xrge0tsms  21339  lhop1  22415  xrlimcnp  23298  iocinioc2  27590  xrge0tsmsd  27775  xrge0iifcnv  27915  lmxrge0  27934  iocinico  31179  rfcnpre4  31409  iocgtlb  31535  iocleub  31536  eliocd  31543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-8 1820  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691  ax-un 6592  ax-cnex 9569  ax-resscn 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-uni 4250  df-br 4453  df-opab 4511  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-iota 5556  df-fun 5595  df-fv 5601  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-xr 9653  df-ioc 11563
  Copyright terms: Public domain W3C validator