![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > elioc2 | Unicode version |
Description: Membership in an open-below, closed-above real interval. (Contributed by Paul Chapman, 30-Dec-2007.) (Revised by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
elioc2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 9660 | . . 3 | |
2 | elioc1 11600 | . . 3 | |
3 | 1, 2 | sylan2 474 | . 2 |
4 | mnfxr 11352 | . . . . . . . 8 | |
5 | 4 | a1i 11 | . . . . . . 7 |
6 | simpll 753 | . . . . . . 7 | |
7 | simpr1 1002 | . . . . . . 7 | |
8 | mnfle 11371 | . . . . . . . 8 | |
9 | 8 | ad2antrr 725 | . . . . . . 7 |
10 | simpr2 1003 | . . . . . . 7 | |
11 | 5, 6, 7, 9, 10 | xrlelttrd 11392 | . . . . . 6 |
12 | 1 | ad2antlr 726 | . . . . . . 7 |
13 | pnfxr 11350 | . . . . . . . 8 | |
14 | 13 | a1i 11 | . . . . . . 7 |
15 | simpr3 1004 | . . . . . . 7 | |
16 | ltpnf 11360 | . . . . . . . 8 | |
17 | 16 | ad2antlr 726 | . . . . . . 7 |
18 | 7, 12, 14, 15, 17 | xrlelttrd 11392 | . . . . . 6 |
19 | xrrebnd 11398 | . . . . . . 7 | |
20 | 7, 19 | syl 16 | . . . . . 6 |
21 | 11, 18, 20 | mpbir2and 922 | . . . . 5 |
22 | 21, 10, 15 | 3jca 1176 | . . . 4 |
23 | 22 | ex 434 | . . 3 |
24 | rexr 9660 | . . . 4 | |
25 | 24 | 3anim1i 1182 | . . 3 |
26 | 23, 25 | impbid1 203 | . 2 |
27 | 3, 26 | bitrd 253 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 /\ w3a 973 e. wcel 1818
class class class wbr 4452 (class class class)co 6296
cr 9512 cpnf 9646 cmnf 9647
cxr 9648
clt 9649 cle 9650 cioc 11559 |
This theorem is referenced by: iocssre 11633 ef01bndlem 13919 sin01bnd 13920 cos01bnd 13921 cos1bnd 13922 sinltx 13924 sin01gt0 13925 cos01gt0 13926 sin02gt0 13927 sincos1sgn 13928 sincos2sgn 13929 icoopnst 21439 iocopnst 21440 ismbf3d 22061 aaliou3lem2 22739 aaliou3lem3 22740 pilem2 22847 sinhalfpilem 22856 sincosq1lem 22890 coseq0negpitopi 22896 tangtx 22898 sincos4thpi 22906 efif1olem1 22929 efif1olem2 22930 efif1o 22933 efifo 22934 ellogrn 22947 logimclad 22960 ellogdm 23020 logdmnrp 23022 dvloglem 23029 dvlog2lem 23033 asinneg 23217 atans2 23262 ressatans 23265 abvcxp 23800 ostth2 23822 xrge0iifcv 27916 xrge0iifiso 27917 xrge0iifhom 27919 sinccvglem 29038 dvasin 30103 areacirclem4 30110 gtnelioc 31523 limcicciooub 31643 fourierdlem4 31893 fourierdlem26 31915 fourierdlem33 31922 fourierdlem37 31926 fourierdlem65 31954 fourierdlem79 31968 fouriersw 32014 bj-pinftyccb 34624 bj-pinftynminfty 34630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-8 1820 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pow 4630 ax-pr 4691 ax-un 6592 ax-cnex 9569 ax-resscn 9570 ax-pre-lttri 9587 ax-pre-lttrn 9588 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-nel 2655 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-sbc 3328 df-csb 3435 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-pw 4014 df-sn 4030 df-pr 4032 df-op 4036 df-uni 4250 df-br 4453 df-opab 4511 df-mpt 4512 df-id 4800 df-po 4805 df-so 4806 df-xp 5010 df-rel 5011 df-cnv 5012 df-co 5013 df-dm 5014 df-rn 5015 df-res 5016 df-ima 5017 df-iota 5556 df-fun 5595 df-fn 5596 df-f 5597 df-f1 5598 df-fo 5599 df-f1o 5600 df-fv 5601 df-ov 6299 df-oprab 6300 df-mpt2 6301 df-er 7330 df-en 7537 df-dom 7538 df-sdom 7539 df-pnf 9651 df-mnf 9652 df-xr 9653 df-ltxr 9654 df-le 9655 df-ioc 11563 |
Copyright terms: Public domain | W3C validator |