MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elirr Unicode version

Theorem elirr 8045
Description: No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
elirr

Proof of Theorem elirr
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5
21, 1eleq12d 2539 . . . 4
32notbid 294 . . 3
4 elirrv 8044 . . 3
53, 4vtoclg 3167 . 2
6 pm2.01 168 . 2
75, 6ax-mp 5 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  =wceq 1395  e.wcel 1818
This theorem is referenced by:  sucprcreg  8046  sucprcregOLD  8047  alephval3  8512  rankeq1o  29828  hfninf  29843  bnj521  33792  bj-disjcsn  34505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691  ax-reg 8039
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-v 3111  df-dif 3478  df-un 3480  df-nul 3785  df-sn 4030  df-pr 4032
  Copyright terms: Public domain W3C validator